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bstract

A macroscopic modeling of diffusion and chemical reaction in double emulsion systems using the method of volume-averaging is presented.
n this three-phase system, chemical reaction takes place in the drops and membrane phases (ω-region) while passive diffusion is considered in
he continuous external phase (η-region). First, a generalized one-equation model, free of the usual length scale constraints, is derived in order to
escribe the solute transfer in both homogeneous regions and in the ω–η inter-region. The up-scaling in the ω-region is based in the local mass
quilibrium assumption between the two phases. Equations in both homogeneous regions are deduced from the generalized one-equation model.
hen, the jump boundary condition at the dividing surface is derived and associated closure problems are established in order to calculate the jump
oefficients.

2007 Elsevier B.V. All rights reserved.
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. Introduction

This study deals with the analysis of diffusion and chemical reaction in a system composed by three phases (Fig. 1) where the
xternal phase (γ-phase) contains dispersed drops called membrane phase (μ-phase), themselves containing small dispersed droplets
σ-phase). This system is similar to double emulsions which are used in many extraction processes such as hydrocarbons fractioning
1,2], recuperation of rare component ions [3], recovery of metals [4], purification of fatty esters [5], elimination of contaminants
n aqueous streams [6], and the concentration of pharmaceuticals [7]. The so-called liquid surfactant membrane has been used for
actic acid extraction [8] and to explore enzymatic reactions [9]. Moreover, the study of gas dispersion and mass exchange between
ubbles and emulsion phases, including interfacial mass transfer, (with and without chemical reaction) is essential in order to model
ass transfer in fluidized beds [10,11]. In addition, a clear study of the rheology in double emulsion systems has been recently,

erformed by Pal [12]. These extraction processes involve the transport of a solute of interest (species A) from the external phase
γ-phase) to the droplets (σ-phase). The transport is based in the difference of solubility of the several phases and is increased
y means of a reversible chemical reaction in the μ-phase while an irreversible reaction takes place in the σ-phase. This type of
embrane separation represents a relatively new unit operation which, ultimately, is expected to replace a significant proportion

f conventional separation processes [13]. Unlike classical process such as distillation, extraction, and crystallization, membrane
eparation generally does not involve phase transition and therefore requires lower energy consumption.

Theoretical studies of diffusion and reaction in double emulsions have been carried out [1,3,14–24] but most of the works have

een focused in the solution of the differential equations. Most of the models are based in intuitive considerations that could lead to
ough approximations and inaccurate interpretation of experimental results. In their large majority, these models implicitly consider
verage equations where macroscopic quantities are not explicitly related to local values and therefore prediction of the effective
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Nomenclature

Along the paper, “α” is used to indicate variables or parameters associated with the phase γ , μ or σ; “λ” with the region η
or ω, and “i” with the species A, B or R.
a
μσ
v droplet interfacial volumetric area (m−1)

A∞ external surface of the large-scale averaging volume V∞
Aλ external surface of Vλ
Aηω dividing surface between η- and ω-regions
Aμα surface of the μ–α interface in the averaging volume
bα vector that maps ∇{CA}ω onto C̃Aα (m)
biα vector that maps ∇〈Ciα〉α onto C̃iα, i = B, R (m)
bλα vector that maps ∇{CA}λ onto C̃Aα (m)
{CA} generalized volume averaged concentration (mol/m3)
Ciα local concentration of species i(A, B, R) in the α-phase (mol/m3)
Diα molecular diffusivity of species i(A, B, R) in the α-phase (m2/s)
DA(x) position-dependent effective diffusivity tensor of species A in the generalized one-equation model (m2/s)
Diα position dependent effective diffusivity tensor of species i(A, B, R) in generalized average equation for 〈Ciα〉α (m2/s)
Diω effective diffusivity tensor of species i(A, B, R) in the homogeneous ω-region (m2/s)
h half of the length of the unit cell for the inter-region (m)
kσ reaction rate constant in the σ-phase (m3 (mol s)−1)
kμ reaction rate constant in the μ-phase (s−1)
Kμ equilibrium reaction constant μ-phase
K
μα
eq equilibrium distribution coefficient for the solute A between the μ-phase and α-phase; α= σ, γ

〈Kμαeq 〉αμ
ηω

area average of Kμαeq ; α= σ, γ

K
ηω
eff effective equilibrium coefficient at the ω–η dividing surface

I unit tensor
� unit cell size (m)
�α characteristic length for α-phase (m)
L characteristic length for volume averaged properties (m)
nαβ normal unit vector directed from the α-phase towards the β-phase
nωη unit normal vector directed from the ω-region towards the η-region
NAα molar flux of species A corresponding to the α-phase (mol/m2 s)
Pαμ membrane permeability at the α= σ, γ interface (m/s)
〈Pαμ〉αμηω area average of Pαμ, m/s, α= σ, γ

Pλeff effective permeability in the λ-region (m/s)
r0 radius of the averaging volume (m)
R(x) position-dependent effective reaction rate (mol (s m3)−1)
Rα local reaction rate in the α-phase (mol (s m3)−1)
sλα closure variable that maps {CA}λ onto C̃Aα; α= σ, μ, γ , λ=ω, η
t time (s)
t* characteristic process time (s)
V averaging volume (m3)
V∞ large-scale averaging volume (m3)
Vα volume of the α-phase contained in the averaging volume (m3)
x position vector locating the centroid of averaging volume (m)
yα position vector used to locate points in the α-phase relative to the centroid of averaging volume (m)

Greek letters
ε(x) position-dependent mixed-mode volume fraction defined in Eq. (39)
εα volume fraction of the α-phase

Subscripts
s identifies excess quantities
0 at the dividing surface
α identifies a quantity associated to the α-phase, α(σ, μ, γ)
λ identifies a quantity associated to the λ-region, λ(η, ω)
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Special notation
ψ̃α spatial local deviation of variable ψα from the average value 〈ψα〉α
ψ̂α spatial macroscopic deviation of average variable 〈ψα〉α
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〈ψα〉 superficial average value of ψα
〈ψα〉α intrinsic average value of ψα

oefficients is not considered. However, recent studies have been devoted to the development of multiscale models of three-phase
ystems (such as gas–liquid–solid) in fluidized beds [25]. Important improvements (in macroscopic modeling) have been achieved
or diffusion and reaction in other three-phase systems such as biofilms or cellular systems [26,27] which are based in the application
f the method of volume averaging [28]. In these cases, the effective diffusivity tensor involved in the macroscopic description is
redicted by means of closure problems which have been solved for simplified geometries.

In the mentioned three-phase system, the concentration equation in the membrane phase (ω-region) has been represented by a
one average transport equation model”, similar to the one obtained in Ref. [29]. This equation is coupled to the transport equation
n the external η-region by appropriate boundary conditions. However, the length scale constraints imposed through the derivation
f the single average equation in both the η- and ω-regions are not satisfied in the ω–η inter-region where rapid spatial variations of
he effective properties are present. Several authors have shown, in the context of volume averaging method, that this difficulty can
e solved by the introduction of a jump condition for the mass flux of concentration. This condition applies at the dividing surface
hat replaces the ω–η inter-region [30,31,37].

The objective of this work is to provide a macroscopic modeling analysis of diffusion and reaction in double emulsion systems
nd to derive the jump boundary condition at the dividing surface. This is done using the method of volume averaging. The paper is
rganized as follows: the local conservation equations for the three-phase system are presented in Section 2 and averaged in Section
. Then, a generalized one-equation model is derived (Section 4) in order to describe the solute transfer in the whole three-phase
ystem (both in the homogeneous ω- and η-regions and in the ω–η inter-region). The up-scaling in the ω-region is based in the
ocal mass equilibrium assumption between droplets and liquid membrane. Equations in both homogeneous ω- and η-regions are
educed from the generalized equation. Finally, on the basis of previous studies [31–33] the macroscopic jump condition is derived
n Section 5 and its closed form is presented in Section 6. The effective transport coefficients involved in this jump condition are
elated to closure variables which are solutions of associated boundary-value problems.

. Local equations
Let us consider the three-phase system illustrated in Fig. 1 where two homogeneous regions are identified. The ω-region is
omposed by a continuous membrane phase (μ-phase) and small disperse droplets (σ-phase) while the η-region corresponds to the
xternal continuous γ-phase surrounding the ω-region. In this three-phase system, it is assumed that species A is transferred from

ig. 1. Three-phase system. Scale I corresponds to the macroscopic system; Scale II represents a sample of the liquid membrane drops surrounded by the external
-phase while Scale III illustrates droplets in the membrane phase.
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he η-region to the ω-region. In this latter region an irreversible reaction (A + R → P) takes place in the σ-phase while a reversible
eaction A� B occurs in the μ-phase. The formulation of the problem is restricted to dilute solutions where convective transport
s neglected. However, it captures the main characteristics that are pursued in a double emulsion separation system. The effect of
onvective transport in the γ-phase will be presented in a future work.

The local equations governing the diffusive mass transfer with chemical reactions process are

σ-phase

∂CAσ

∂t
= ∇ · (DAσ∇CAσ) − Rσ, (1)

∂CRσ

∂t
= ∇ · (DRσ∇CRσ) − Rσ. (2)

μ-phase

∂CAμ

∂t
= ∇ · (DAμ∇CAμ) − Rμ, (3)

∂CBμ

∂t
= ∇ · (DBμ∇CBμ) + Rμ. (4)

γ-phase

∂CAγ

∂t
= ∇ · (DAγ∇CAγ ). (5)

The kinetics of the two chemical reactions occurring in the σ- and μ-phases are given, respectively by

Rσ = kσCAσCRσ, (6)

Rμ = kμ

(
CAμ − CBμ

Kμ

)
. (7)

Eq. (6) considers the possibility of increasing the separation capability of the system by eliminating the solute in the inner phase
14,23]. Eq. (7) includes the facilitated transport mechanism in the membrane phase [3,4,7]. In this way, although the two kinetic
xpressions have been taken to be simple, the essence of the separation problem is maintained. Eqs. (1)–(5) are associated to the
ollowing interfacial boundary conditions

at the σμ-interface,

−nμσ · DAμ∇CAμ = −nμσ · DAσ∇CAσ (8)

−nσμ · DAσ∇CAσ = Pσμ(CAσ −Kμσeq CAμ) (9)

−nσμ · DRσ∇CRσ = 0 (10)

−nμσ · DBμ∇CBμ = 0 (11)

at the μγ-interface,

−nμγ · DAμ∇CAμ = −nμγ · DAγ∇CAγ (12)

−nγμ · DAγ∇CAγ = Pγμ(CAγ −Kμγeq CAμ) (13)

−nμγ · DBμ∇CBμ = 0. (14)

Eqs. (8), (9), (12) and (13) have been derived following Wood and Whitaker [26]. For conciseness, details are not provided in
he present paper but it can be shown that coefficients Pσμ, Pγμ, Kμσeq and Kμγeq are functions of local equilibrium constants. In the
bove equations nμσ represents the unit normal vector directed from the μ-phase towards the σ-phase. In Eqs. (9) and (13),Kμσeq and

μγ
eq are the equilibrium distribution coefficients for the solute A, while the membrane permeability of the σμ- and γμ-interfaces

re given by Pσμ and Pγμ, respectively. On the other hand, Eqs. (10), (11) and (14) indicate that the solutes B and R are restricted to
he μ- and σ-phases, respectively. In order to provide a generalized one-equation model for the whole three-phase system, the local
quations are up-scaled, in the next section, using the method of volume averaging.
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Fig. 2. Averaging volume of radius r0 to obtain average concentrations and equations at Scale II.

. Volume averaging

Let us consider an averaging volume V (Fig. 2) that can be located in the double emulsion system including the ω–η inter-region
here rapid spatial variations of the geometric properties are present. In terms of this averaging volume, two averaging operators

rise [28], namely the superficial average of a quantity ψμ, defined in the μ-phase

〈ψμ〉 = 1

V
∫
Vμ(x)

ψμ dV (15)

nd the intrinsic average, given by

〈ψμ〉μ = 1

Vμ

∫
Vμ(x)

ψμ dV. (16)

These two averages are related by

〈ψμ〉 = εμ(x)〈ψμ〉μ (17)

here εμ(x) is the volume fraction occupied by the μ-phase within the averaging volume. Although V is constant, it is important
o note that the volumes of each phase may change with the location of the averaging volume, which is determined by the vector x
Fig. 2). This idea can be expressed more precisely by

V = Vσ(x) + Vμ(x) + Vγ (x) (18)

nd therefore

εσ(x) + εμ(x) + εγ (x) = 1. (19)

In Eq. (19), the spatial dependence of the three-phase volume fractions has been kept explicit since they undergo significant
patial variations in the inter-region. Notice that in the homogeneous ω-region only the σ- and μ-phases are present, and therefore
σ + εμ = 1 and εγ = 0. On the other hand, in the homogeneous η-region εγ = 1 (εσ = εμ = 0). Since the membrane phase (μ-phase) is
n contact with the other two phases, the averaging procedure is first performed in Eqs. (3) and (4). In this way, an average form of
qs. (1), (2) and (5) will be easily deduced from the average equation obtained for the membrane phase.
Applying the superficial average operator to Eq. (3) gives〈
∂CAμ

∂t

〉
= 〈∇ · (DAμ∇CAμ)〉 − 〈Rμ〉. (20)
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The initial statement of the problem assumes the microstructure to be time-independent, therefore Vμ is constant and integration
nd differentiation can be interchanged in the left hand side (LHS) of Eq. (20) leading to

∂〈CAμ〉
∂t

= 〈∇ · (DAμ∇CAμ)〉 − 〈Rμ〉. (21)

Applying the spatial averaging theorem [34] to the first term of the right hand side (RHS) of Eq. (21) yields

∂〈CAμ〉
∂t

= ∇ · 〈DAμ∇CAμ〉 + 1

V
∫
Aμσ

nμσ · DAμ∇CAμ dA+ 1

V
∫
Aμγ

nμγ · DAμ∇CAμ dA− 〈Rμ〉 (22)

Assuming that DAμ is constant within the averaging volume and using again the spatial averaging theorem leads to

∂〈CAμ〉
∂t

= ∇ ·
[
DAμ

(
∇〈CAμ〉 + 1

V
∫
Aμσ

nμσCAμ dA+ 1

V
∫
Aμγ

nμγCAμ dA

)]

+ 1

V
∫
Aμσ

nμσ · DAμ∇CAμ dA+ 1

V
∫
Aμγ

nμγ · DAμ∇CAμ dA− 〈Rμ〉. (23)

In terms of intrinsic averaged quantities, Eq. (22) can be rewritten under the form

εμ(x)
∂〈CAμ〉μ
∂t

= ∇ · [εμ(x)DAμ · ∇〈CAμ〉μ] + 1

V
∫
Aμσ

nμσ · DAμ∇CAμ dA+ 1

V
∫
Aμγ

nμγ · DAμ∇CAμ dA− εμ(x)〈Rμ〉μ

(24)

here we introduced the position-dependent diffusivity tensor DAμ given by

DAμ · ∇〈CAμ〉μ = DAμ∇〈CAμ〉μ + DAμ

Vμ

[∫
Aμσ

nμσ(CAμ − 〈CAμ〉μ) dA+
∫
Aμγ

nμγ (CAμ − 〈CAμ〉μ) dA

]
. (25)

Substituting Eq. (7) in Eq. (24) gives

εμ(x)
∂〈CAμ〉μ
∂t

= ∇ · [εμ(x)DAμ · ∇〈CAμ〉μ] + 1

V
∫
Aμσ

nμσ · DAμ∇CAμ dA

+ 1

V
∫
Aμγ

nμγ · DAμ∇CAμ dA− εμ(x)kμ

(
〈CAμ〉μ − 〈CBμ〉μ

Kμ

)
. (26)

To obtain the above equation, the spatial changes of kμ and Kμ within the averaging volume have been neglected. At this stage,
ote that Eq. (26) has been derived without the use of any length scale constraints and therefore it is valid in both the homogeneous
nd heterogeneous regions. Finally, let us remark that, due to its lineal form, the average kinetics in Eq. (26) are of the same form
han the point equation given by Eq. (7). This will not be the case for the average equation of the globular phase.

Similarly to species A, the average equation for species B is given by

εμ(x)
∂〈CBμ〉μ
∂t

= ∇ · [εμ(x)DBμ · ∇〈CBμ〉μ] + εμ(x)kμ

(
〈CAμ〉μ − 〈CBμ〉μ

Kμ

)
(27)

here DBμ has the same form as DAμ (Eq. (25)).
An analogous averaging procedure applied to Eqs. (1) and (5) leads to

εγ (x)
∂〈CAγ 〉γ
∂t

= ∇ · [εγ (x)DAγ · ∇〈CAγ 〉γ ] + 1

V
∫
Aμγ

nγμ · DAγ∇CAγ dA (28)

εσ(x)
∂〈CAσ〉σ
∂t

= ∇ · [εσ(x)DAσ · ∇〈CAσ〉σ] + 1

V
∫
Aμσ

nσμ · DAσ∇CAσ dA− εσ(x)kσ〈CAσ〉σ〈CRσ〉σ − εσ(x)〈Rσ〉σexc (29)

here the following definition has been introduced

DAi · ∇〈CAi〉i = DAi∇〈CAi〉i + DAi
∫

niμ(CAi − 〈CAi〉i) dA i = σ, γ. (30)

Vi Aiμ

In order to avoid the imposition of any length scale constraints, the following representation is adopted for the reaction term

〈Rσ〉σ = kσ〈CAσ〉σ〈CRσ〉σ + 〈Rσ〉σexc (31)



i
h
i

w

4

e
p
t
o

m

a

s

w
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n which 〈Rσ〉σexc represents the excess reaction contribution. As shown in Appendix A, this term is found to be negligible in the
omogeneous-ω region when local mass equilibrium is satisfied. Finally, averaging Eq. (2) and introducing the zero mass-flux
nterfacial condition yields

εσ(x)
∂〈CRσ〉σ
∂t

= ∇ · [εσ(x)DRσ · ∇〈CRσ〉σ] − εσ(x)kσ〈CAσ〉σ〈CRσ〉σ − εσ(x)〈Rσ〉σexc. (32)

ith DRσ similar to DAσ .

. Generalized one-equation model

In order to develop the one-equation model for diffusion and reaction of the solute A, we must recall the principle of local mass
quilibrium, which is based in the assumption that the mass transfer process can be characterized by a single concentration. This
rinciple has been used by Whitaker [35] to obtain a one-equation model in a micropore–macropore system. On the other hand,
he principle of local mass equilibrium has been used to describe the diffusion and reaction process in cellular media, in terms of a
ne-equation model [26,29].

Keeping that idea in mind, the following equilibrium weighted average concentration is proposed for the generalized one-equation
odel

{CA} = εμ(x)〈CAμ〉μ + εσ(x)

K
μσ
eq

〈CAσ〉σ + εγ (x)

K
μγ
eq

〈CAγ 〉γ (33)

long with the macroscopic spatial deviation concentrations given by

ĈAμ = 〈CAμ〉μ − {CA} (34)

ĈAσ = 〈CAσ〉σ −Kμσeq {CA} (35)

ĈAγ = 〈CAγ 〉γ −Kμγeq {CA}. (36)

These deviations are zero under local mass equilibrium conditions and are negligible when certain length scale constraints are
atisfied. Using the above definitions in the result of adding Eqs. (26), (28) and (29) yields after some manipulations [36]

ε(x)
∂{CA}
∂t

= ∇ · [DA(x) · ∇{CA}] − R(x) − ∂χ̂(x)

∂t
+ ∇ · d̂ − R̂(x)︸ ︷︷ ︸

non-equilibrium terms

(37)

here the following definitions have been introduced

Effective reaction rate term

R(x) = εσ(x)kσK
μσ
eq {CA}〈CRσ〉σ + εμ(x)kμ

(
{CA} − 〈CBμ〉μ

Kμ

)
(38)

Mixed volume fraction

ε(x) = εμ(x) + εσ(x)Kμσeq + εγ (x)Kμγeq (39)

Position dependent diffusivity tensor

DA(x) · ∇{CA} = (εμ(x)DAμ + εσ(x)Kμσeq DAσ + εγ (x)DAγK
μγ
eq )∇{CA} +

3∑
i=2

∫
Aμi

nμi

×
[
εμ(x)DAμ

Vμ
(CAμ − 〈CAμ〉μ) − εi(x)DAi

Vi
(CAi − 〈CAi〉i)

]
dA (40)

In addition, the non-equilibrium terms are given by
Non-equilibrium accumulation

∂χ̂(x)

∂t
=

3∑
i=1

εi(x)
∂ĈAi

∂t
, (41)
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Non-equilibrium diffusion

d̂ =
3∑
i=1

εi(x)DAi∇ĈAi, (42)

Non-equilibrium reaction

R̂(x) = εσ(x)kσĈAσ〈CRσ〉σ + εμ(x)kμĈAμ + εσ(x)〈Rσ〉σexc. (43)

Let us remark that expressions (39) and (40) have been obtained assuming thatKμσeq andKμγeq are constants. In Eqs. (40)–(42) we
ave used 1 ≡μ; 2 ≡ σ; 3 ≡ γ .

In addition, note that in both homogeneous regions, the following length scale constraints are satisfied

�σ, �μ � r0, r2
0 � LC1Lε (44)

hich allow simplifying Eq. (40) as shown later.
Eq. (37) is the generalized mass transfer equation for solute A valid everywhere in the whole system since its derivation does

ot involve the use of the usual length scale constraints at all. As consequence, Eq. (37) can be used to obtain the corresponding
ffective medium equations for the homogeneous portions of the system, this is carried out below.

.1. Homogeneous η-region

This region is only composed by the γ-phase (i.e., εγ (x) = 1 and εμ(x) = εσ(x) = 0). When the averaging volume is small enough,
�σ , �μ� r0) [32], Eq. (37) reduces to

∂{CA}η
∂t

= ∇ · [DAγ∇{CA}η] (45)

here {CA}η represents the concentration field in the η-region.

.2. Homogeneous ω-region

In this two-phase region, the μ- and σ-phases have volume fractions with negligible spatial variations (i.e., εγ (x) = 0; εμ(x) = εμω
nd εσ(x) = εσω). This implies that the characteristic length constraints given in Eq. (44) are satisfied. Under such circumstances,
q. (37) reduces to

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

= ∇ · [DAω · ∇{CA}ω] − εσωkσK
μσ
eq {CA}ω〈CRσ〉σω − εμωkμ

(
{CA}ω − 〈CBμ〉μω

Kμ

)
−εσωkσ〈C̃AσC̃Rσ〉σω + ∇ · [εσωDAσ∇ĈAσ + εμωDAμ∇ĈAμ] − εμωkμĈAμ

−εσωkσĈAσ〈CRσ〉σω − εμω
∂ĈAμ

∂t
− εσω

∂ĈAσ

∂t
(46)

Here, the diffusivity tensor DAω is given by,

DAω · ∇{CA}ω = DAσμ∇{CA}ω + 1

V

∫
Aμσ,ω

nμσ[DAμC̃Aμ − DAσC̃Aσ] dA (47)

here,

DAσμ = εμωDAμ + εσωK
μσ
eq DAσ (48)

nd the spatial concentration deviations given by

C̃Ai = CAi − 〈CAi〉iω i = μ, σ. (49)

In Eq. (46), we have used, 〈CAμ〉μω 	 C̃Aμ and 〈CAσ〉σω 	 C̃Aσ which is only valid when the length constraints given by Eq.
44) are satisfied. In order to derive the one-equation model, with the only dependent variable {C } , the following restrictions are
A ω

mposed

εμω
∂ĈAμ

∂t
+ εσω

∂ĈAσ

∂t
� ∇ · [DAω · ∇{CA}ω], (50)
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εσωDAσ∇ĈAσ + εμωDAμ∇ĈAμ � DAω · ∇{CA}ω, (51)

εμωkμĈAμ + εσωkσĈAσ〈CRσ〉σω � ∇ · [DAω · ∇{CA}ω]. (52)

Note that these restrictions are proposed on the basis that the macroscopic deviation terms are negligible with respect to the
iffusive terms in the one-equation model. For conciseness, the length scale constraints allowing the restrictions given in Eqs.
50)–(52) are presented in Appendix A. As consequence Eq. (46) becomes

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

= ∇ · [DAσμ∇{CA}ω] + ∇ ·
{

1

V
∫
Aμσ,ω

nμσ[DAμC̃Aμ − DAσC̃Aσ] dA

}

−εσωkσKμσeq {CA}ω〈CRσ〉σω − εσωkσ〈C̃AσC̃Rσ〉σω − εμωkμ

(
{CA} − 〈CBμ〉μ

Kμ

)
(53)

On the other hand, the associated closure problem for the concentration deviation variables [29] suggest that

C̃Aj = bj · ∇{CA}ω, j = σ,μ (54)

C̃Rσ = bRσ · ∇〈CRσ〉σω (55)

nd therefore Eq. (53) takes the form

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

= ∇ · (DAω · ∇{CA}ω) − εμωkμ

(
{CA}ω − 〈CBμ〉μω

Kμ

)
− εσωkσK

μσ
eq 〈CRσ〉σω{CA}ω

−εσωkσ〈bRσbσ〉σω : ∇∇〈CRσ〉σω{CA}ω (56)

here the effective diffusivity tensor for species A in the ω-region, takes the form

DAω = DAσμI + 1

V
∫
Aμσ,ω

nσμ(DAσbσ − DAμbμ) dA. (57)

Furthermore, if the following length scale constraint is satisfied

�σ�μ

L2 � 1 (58)

Then, Eq. (56) finally reduces to the one-equation model for the homogeneous ω-region

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

= ∇ · (DAω · ∇{CA}ω) − 〈R〉ω (59)

here

〈R〉ω = εμωkμ

(
{CA}ω − 〈CBμ〉μω

Kμ

)
+ εσωkσK

μσ
eq 〈CRσ〉σω{CA}ω (60)

The components of the effective diffusivity tensor DAω, have been previously computed for several configurations [29]. In Eq.
60), 〈CBμ〉μω and 〈CRσ〉σω are the solutions of the average equations for species B and R, respectively,

εμω
∂〈CBμ〉μω
∂t

= ∇ · [εμωDBω · ∇〈CBμ〉μω] + εμωkμ

(
{CA}ω − 〈CBμ〉μω

Kμ

)
, (61)

εσω
∂〈CRσ〉σω
∂t

= ∇ · [εσωDRω · ∇〈CRσ〉σω] − εσωkσK
μσ
eq {CA}ω〈CRσ〉σω (62)

hich have been obtained from Eqs. (27) and (32) with the use of following restrictions

∇ · [εμωDBω · ∇〈CBμ〉μω] 	 εμωkμĈAμ, (63)

∇ · [εσωDRω · ∇〈CRσ〉σω] 	 εσωkσĈAσ〈CRσ〉σω. (64)
In Eqs. (61) and (62) the effective diffusivity tensors are defined by

DBω = DBμI + DBμ

Vμ

∫
Aμσ,ω

nμσbBσ dA, (65)
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Fig. 3. Large scale averaging volume at the ω–η inter-region that includes the interfacial mass transfer resistance between the γ- and μ-phases.

DRω = DRσ I + DRσ

Vσ

∫
Aμσ,ω

nσμbRσ dA. (66)

Let us note that Eq. (59) is only valid whenever the local mass equilibrium assumption is satisfied. According to the analysis
erformed in Appendix A, the length scale constraints leading to this assumption are more likely to be satisfied in the homogeneous
ortions of theω-region, but they actually fail in theω–η inter-region. This is the reason why it is necessary to derive the corresponding
ump boundary conditions that match Eqs. (45) and (60) at the dividing surface. This is carried out in following sections.

. Jump boundary condition

In order to derive the jump boundary conditions we first define a large-scale averaging volume V∞. It is located at the ω–η
nter-region (Fig. 3) and contains portions of both homogeneous regions, such as

V∞ = Vω + Vη. (67)

On the other hand, the area that defines this volume is expressed as

A∞ = Aω + Aη (68)

here Aω and Aη denote the external surface areas of the volumes Vω and Vη, respectively. The integration of Eq. (37) over V∞ and
he use of the divergence theorem yield∫

Vω

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t

)
dV +

∫
Vη

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t

)
dV

=
∫
Aω

nω · [DA(x) · ∇{CA} + d̂] dA+
∫
Aη

nη · [DA(x) · ∇{CA} + d̂] dA

−
∫
Vω

[R(x) + R̂(x)] dV −
∫
Vη

[R(x) + R̂(x)] dV (69)

For convenience, the equilibrium and non-equilibrium accumulation, diffusion and reaction terms were combined accordingly.
imilarly, integrating Eqs. (45) and (59) over the volumes Vη and Vω, respectively leads to∫

Vη

∂{CA}η
∂t

dV =
∫
Aη

nη · (DAγ∇{CA}η) dA+
∫
A∗
ηω

nηω · [DAγ∇{CA}η] dA (70)

∫
Vω

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

dV =
∫
Aω

nω · (DAω · ∇{CA}ω) dA+
∫
A∗
ηω

nωη · (DAω · ∇{CA}ω) dA−
∫
Vω

〈R〉ω dV (71)
In the above equations, A∗
ηω represents the portion of dividing surface Aωη contained within V∞, where the macroscopic

ump boundary condition is imposed. The location of this surface can be arbitrarily chosen as the position x = x0 where the
-phase volume fraction is equal to the mean of the corresponding values in the homogeneous regions. The dividing surface
ust include the effect of the interfacial mass transfer resistance between the γ- and μ-phases. Subtracting Eqs. (70) and (71)
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rom Eq. (69) leads to∫
Vω

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t
− (εμω + εσωK

μσ
eq )

∂{CA}ω
∂t

)
dV +

∫
Vη

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t
− ∂{CA}η

∂t

)
dV

=
∫
Aω

nω · [DA(x) · ∇{CA} + d̂ − DAω · ∇{CA}ω] dA+
∫
Aη

nη · [DA(x) · ∇{CA} + d̂ − DAγ∇{CA}η] dA

−
∫
A∗
ηω

nωη · (DAω · ∇{CA}ω − DAγ∇{CA}η) dA−
∫
Vω

(R(x) + R̂− 〈R〉ω) dV −
∫
Vη

(R(x) + R̂) dV (72)

hose form suggests introducing the following excess terms:

Excess of surface accumulation∫
A∗
ωη

εs
∂{CA}s
∂t

dA =
∫
Vω

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t
− (εμω + εσωK

μσ
eq )

∂{CA}ω
∂t

)
dV

+
∫
Vη

(
ε(x)

∂{CA}
∂t

+ ∂χ̂(x)

∂t
− ∂{CA}η

∂t

)
dV (73)

Excess of surface conductive transport∮
C

ns · (εsDs · ∇s{CA}s) dσ =
∫
Aω

nω · [DA(x) · ∇{CA} + d̂ − DAω · ∇{CA}ω] dA+
∫
Aη

nη · [DA(x) · ∇{CA}

+d̂ − DAγ∇{CA}η] dA (74)

Excess of surface reaction rate∫
A∗
ωη

〈R〉s dA =
∫
Vω

(R(x) + R̂(x) − 〈R〉ω) dV +
∫
Vη

(R(x) + R̂(x)) dV (75)

In Eq. (74) ns is the outwardly unit normal vector to the Curve C (Fig. 3), εs is the excess surface volume fraction, Ds represents the
xcess surface diffusivity tensor, and ∇s is the superficial nabla operator defined by ∇s = (I − nηωnηω)·∇. The use of Eqs. (73)–(75)
nto Eq. (72) yields, after making use of the surface divergence theorem [39]

εs
∂{CA}s
∂t︸ ︷︷ ︸

surface accumulation

− ∇s · (εsDs · ∇s{CA}s)︸ ︷︷ ︸
surface transport excess

= −nωη · (DAω · ∇{CA}ω − DAγ∇{CA}η)︸ ︷︷ ︸
surface diffusive exchange

− 〈R〉s︸︷︷︸
excess reaction

atAηω (76)

In many practical situations, the excess of surface transport and accumulation are negligible with respect to the surface diffusive
xchange. Related to this assumption there are certain length scale constraints that must be satisfied. This will be further discussed
lsewhere. Therefore, Eq. (76) can be reduced to

−nωη · (DAω · ∇{CA}ω − DAγ∇{CA}η) = 〈R〉s atAηω (77)

Furthermore, when the excess of surface reaction is negligible compared to the surface diffusive transport, Eq. (77) reduces to
he flux continuity condition

−nηω · DAγ∇{CA}η = −nηω · (DAω · ∇{CA}ω) atAηω. (78)

When this is not the case, one should follow the works of Wood et al. [33] and Valdés-Parada et al. [31] in order to express the
xcess of reaction rate as a function of properties measurable in the homogeneous regions. Moreover, from Section 5 in Valdés-Parada
t al. [31], it can be stated that Eq. (78) is a valid assumption whenever the following inequality is satisfied

1
∫

1
∫

V Vμ

〈R〉ω dV 	 V A∗
ωη

〈R〉s dA. (79)

At this stage, an additional boundary condition is still necessary in order to completely define the problem at the inter-region.
q. (78) suggests imposing continuity of the weighted average concentration at the dividing surface, {CA}η

∣∣
x0

= {CA}ω
∣∣
x0

. As



3

c
h

w

a
(

e

6

i

i

{
c
i

C

p

w
s

(

18 E. Morales-Zárate et al. / Chemical Engineering Journal 138 (2008) 307–332

onsequence, this does not account for the mass transfer resistance between μ and γ phases at x = x0. This is the reason why, we
ere follow Wood et al. [33] to express the mass-flux continuity condition as

−nηω · DAγ∇{CA}η = −nηω · (DAω · ∇{CA}ω) = nηω · 〈NA〉s (80)

here 〈NA〉s represents the excess of surface diffusion flux defined by

nηω · 〈NA〉s = 1

Aηω(x0)

∫
Aηω(x0)

ns · NAs dA = 〈ns · NAs〉ηω. (81)

In Eq. (81) Aηω(x0) is the area of the averaging volume when the centroid is located at the dividing surface [33]. In general, this
rea is composed of two contributions, namely the σμ-interface and the γμ-interface. Using, Eqs. (8) and (9), (12) and (13) in Eq.
81) yields

−nηω · DAγ∇{CA}η = −nηω · (DAω · ∇{CA}ω) = 〈Pσμ(CAσ −Kμσeq CAμ)〉σμ
ηω

+ 〈Pγμ(CAγ −Kμγeq CAμ)〉γμ
ηω

(82)

The closed form of Eq. (82) is derived in the next section. It will be shown that the closed concentration jump condition involves
ffective coefficients that can be computed from the solution of the associated closure problems.

. Closed jump boundary condition

In order to have a useful form of the jump condition, the point concentration values involved in RHS of Eq. (82) must be expressed
n terms of the weighted average concentrations {CA}η and {CA}ω. For this, let us first introduce Gray’s [40] spatial decomposition

CAα = 〈CAα〉α + C̃Aα, α = σ,μ, γ (83)

nto Eq. (82) to get

−nηω · (DAω · ∇{CA}ω) = 〈Pσμ(C̃Aσ −Kμσeq C̃Aμ)〉σμ
ηω

+ 〈Pγμ(C̃Aγ −Kμγeq C̃Aμ)〉γμ
ηω

+ 〈Pσμ(〈CAσ〉σ −Kμσeq 〈CAμ〉μ)〉σμ
ηω

+ 〈Pγμ(〈CAγ 〉γ −Kμγeq 〈CAμ〉μ)〉γμ
ηω
. (84)

It is clear that the terms in the RHS of the above equation must be expressed in terms of the weighted average concentrations
CA}ω and {CA}η. The needed expressions result from the closure problem derived in Appendix B. Actually, the intrinsic average
oncentration 〈CAγ 〉γ can easily be written in terms of {CA}η while 〈CAσ〉σ and 〈CAμ〉μ are expressed in terms of {CA}ω by
ntroducing Eqs. (C.4) and (C.5) into Eq. (84), leading to

−nηω · (DAω · ∇{CA}ω) = 〈Pσμ(C̃Aσ −Kμσeq C̃Aμ)〉σμ
ηω

+ 〈Pγμ(C̃Aγ −Kμγeq C̃Aμ)〉γμ
ηω

+ 〈PγμKμγeq 〉γμ
ηω

({CA}η|x0 − {CA}ω|x0 ).

(85)

Here, it has been assumed that the following restraint is satisfied at the dividing surface

{CA}ω|x0 	
(

〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)
. (86)

The derivation of the constraints associated to the above inequality is given in Appendix C. On the other hand, the deviations
˜
Aα(α = σ,μ, γ) in Eq. (85) are written in terms of the weighted average concentrations according to the boundary-value problem
resented in Appendix B,

C̃Aα = sωα {CA}ω|x0 + sηα{CA}η|x0 + bωα · ∇{CA}ω|x0 + bηα · ∇{CA}η|x0 (87)

here sλα and bλα (α= σ, μ, γ; λ=ω, η) are the closure variables. These latter are the solutions of the closure problems stated in the
ame appendix. Introducing Eq. (87) into Eq. (85) yields

−nηω · (DAω · ∇{CA}ω) = 〈PγμKμγeq 〉γμ
ηω

({CA}η|x0 − {CA}ω|x0 ) + (〈Pσμ(sωσ −Kμσeq s
ω
μ)〉σμ

ηω
+ 〈Pγμ(sωγ −Kμγeq s

ω
μ)〉γμ

ηω
){CA}ω|x0

+(〈Pσμ(sησ −Kμσeq s
η
μ)〉σμ

ηω
+ 〈Pγμ(sηγ −Kμγeq s

η
μ)〉γμ

ηω
){CA}η|x0 . (88)
In the above equation, the terms containing ∇{CA}ω|x0 and ∇{CA}η|x0 were neglected on the basis of order of magnitude estimates
Appendix D). In the same appendix, it is also shown that Eq. (88) can be expressed more conveniently as

−nηω · (DAω · ∇{CA}ω|x0 ) = P
η
eff({CA}η|x0 −K

ηω
eff {CA}ω|x0 ) atAηω (89)
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E. Morales-Zárate et al. / Chemical Engineering Journal 138 (2008) 307–332 319

here Pηeff represents the effective permeability in the η-region, whileKηωeff is the effective equilibrium coefficient at the inter-region.
ndeed, under thermodynamic equilibrium conditions, Kηωeff = 1. As shown in Appendix D, both Pηeff and Kηωeff are functions of
losure variables sλα (α = σ,μ, γ; λ = ω, η). The boundary value problems for sλα can be obtained from Eqs. (B.36)–(B.55) in a unit
ell representing the inter-region (Appendix B). The structure of these problems are similar to the one previously solved by Nozad
t al. [41] to compute the effective conductivity for heat transfer in the bulk of a two-phase medium. Methodologies for the solution
f this type of problems have been presented previously [28].

Finally, the closed set of equations describing the macroscopic mass transport of species A in this three-phase system, is given by

Differential equations

∂{CA}η
∂t

= ∇ · [DAγ∇{CA}η] in the η-region (90)

(εμω + εσωK
μσ
eq )

∂{CA}ω
∂t

= ∇ · (DAω · ∇{CA}ω) − 〈R〉ω in theω-region (91)

Boundary conditions

−nηω · DAγ∇{CA}η|x0 = −nηω · (DAω · ∇{CA}ω|x0 ) atAηω (92)

−nηω · (DAω · ∇{CA}ω|x0 ) = P
η
eff({CA}η|x0 −K

ηω
eff {CA}ω|x0 ) atAηω. (93)

. Conclusions

In this paper the average equations governing the separation of solute A in a three-phase system have been derived using the
olume averaging method. First, a generalized one-equation model (Eq. (37)) was derived in order to describe the solute mass transfer
n both homogeneous regions and in the inter-region. Conservation equations in the homogeneous continuous and dispersed regions
ere obtained from the generalized one-equation model assuming local mass equilibrium in the ω-region. The volume average

oncentration and effective parameters have been precisely defined in terms of local quantities. Order of magnitude analyses have
een performed to determine the length scale constraints associated to the macroscopic model.

Then, in order to fully describe the solute transport at the dividing surface, a concentration jump boundary condition was derived
ollowing the general methodology recently proposed by Valdés-Parada et al. [31]. Associated closure problems for the determination
f the effective jump coefficients were obtained. One of the main features of the results is that the jump is in the concentration and not
ecessarily in the diffusive flux. Indeed, when the surface transport and the excess of chemical reaction are negligible the continuity
f the concentration flux is obtained.

The concentration jump condition contains effective transport coefficients which are expressed in terms of average concentrations
nd closure variables. These latter are obtained by solving the associated boundary-value problems presented in Appendix B. It
s worth mentioning that, in the statement of the closure problem, some length scale constraints were imposed as consequence
f assuming local mass equilibrium. However, overly severe length scale constraints were avoided in the derivation of the jump
ondition by proposing a combination of equilibrium and non-equilibrium terms in the definitions of the excess properties.

Finally, this study enables a better understanding of the assumptions and validity of the equations modeling mass diffusion and
eaction in three-phase systems. The influence of the microstructure in the jump coefficients can be assessed by solving the closure
roblems within representative unit cells of the inter-region. In subsequent papers, the analysis will include convective effects in the
-phase. This will allow proposing a more realistic model for separation in double emulsion systems.
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ppendix A. Local equilibrium constraints in the homogeneous ω-region

In this section, the length scale constraints under which the assumption of local mass equilibrium is valid in the homogeneous
-region are developed. The one-equation model will be valid if the restrictions given by Eqs. (50)–(52) are satisfied. In order to
btain a more useful form of these restrictions, we follow the procedure developed by Whitaker [35] for local thermal equilibrium.
Locating the centroid of the averaging volume (x) in the homogeneous ω-region allows simplifying Eqs. (33)–(35) to

{CA}ω = εμω〈CAμ〉μω + εσω

K
μσ
eq

〈CAσ〉σω (A.1)
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20 E. Morales-Zárate et al. / Chemical Engineering Journal 138 (2008) 307–332

ĈAμω = 〈CAμ〉μω − {CA}ω (A.2)

ĈAσω = 〈CAσ〉σω −Kμσeq {CA}ω (A.3)

ubstituting Eq. (A.1) in Eqs. (A.2) and (A.3) gives

ĈAμω = εσω

K
μσ
eq

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) (A.4)

ĈAσω = −εμω(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) (A.5)

hich can be used to write the intrinsic averages in the μ- and σ-phases in terms of the difference Kμσeq 〈CAμ〉μω − 〈CAσ〉σω and the
eighted average concentration {CA}ω as

〈CAμ〉μω = εσω

K
μσ
eq

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) + {CA}ω (A.6)

〈CAσ〉σω = Kμσeq {CA}ω − εμω(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) (A.7)

Using Eqs. (A.4) and (A.5), the restrictions for local-mass equilibrium in the homogeneous ω-region can written as follows

εμωεσω

K
μσ
eq

(1 −Kμσeq )
∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t
� ∇ · (DAω · ∇{CA}ω), (A.8)

εμωεσω

K
μσ
eq

(DAμ −Kμσeq DAσ)∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) � DAω · ∇{CA}ω, (A.9)

(kμ − kσK
μσ
eq 〈CRσ〉σω)

εσωεμω

K
μσ
eq

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) � ∇ · (DAω · ∇{CA}ω). (A.10)

hich, using order of magnitude estimates, become

LCLC1

DAωt∗
εμωεσω

K
μσ
eq

(1 −Kμσeq )
(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

{CA}ω
� 1, (A.11)

εμωεσω

K
μσ
eq

(DAμ −K
μσ
eq DAσ)

DAω

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

{CA}ω
� 1, (A.12)

LCLC1

DAω
(kμ − kσK

μσ
eq 〈CRσ〉σω)

εσωεμω

K
μσ
eq

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

{CA}ω
� 1. (A.13)

In order to estimate (Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)/{CA}ω, let us express the spatially-smoothed equations for the μ- and σ-phases, in
he homogeneous ω-region, as

εμω
∂〈CAμ〉μω
∂t

= ∇ ·
(
εμωDAμ∇〈CAμ〉μω + DAμ

V
∫
Aμσ,ω

nμσC̃Aμ dA

)
+ 1

V
∫
Aμσ,ω

nμσ · DAμ∇CAμ dA− εμωkμ

×
(

〈CAμ〉μω − 〈CBμ〉μω
Kμ

)
(A.14)

σ
[ ∫ ] ∫
εσω
∂〈CAσ〉ω
∂t

= ∇ · εσωDAσ∇〈CAσ〉σω + DAσ

V Aσμ,ω

nσμC̃Aσ dA + 1

V Aσμ,ω

nσμ · DAσ∇CAσ dA

−εσωkσ〈CAσ〉σω〈CRσ〉σω − εσωkσ〈C̃AσC̃Rσ〉σω (A.15)

In addition, from the closure problems, presented in Ref. [29], we have

C̃Aσ = bσ · ∇{CA}ω; C̃Aμ = bμ · ∇{CA}ω; C̃Rσ = bRσ · ∇〈CRσ〉σ (A.16)
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hich allow writing Eqs. (A.14) and (A.15) only in terms of averaged quantities

∂〈CAμ〉μω
∂t

= ∇ · (DAμ∇〈CAμ〉μω) + ε−1
μω∇εμω · (DAμ∇〈CAμ〉μω) + ε−1

μω∇ ·
(

DAμ

V

[∫
Aμσ,ω

nμσbμ dA

]
· ∇{CA}ω

)

+avωhω
εμω

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) − kμ

(
〈CAμ〉μω − 〈CBμ〉μω

Kμ

)
(A.17)

∂〈CAσ〉σω
∂t

= ∇ · [DAσ∇〈CAσ〉σω
]+ ε−1

σω∇εσω · [DAσ∇〈CAσ〉σω
]+ ε−1

σω∇ ·
[

DAσ

V

[∫
Aσμ,ω

nσμbσdA

]
· ∇{CA}ω

]

−avωhω
εσω

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) − kσ〈CAσ〉σω〈CRσ〉σω − kσ〈bσbRσ〉σω : ∇{CA}ω∇〈CRσ〉σ (A.18)

here, following Quintard and Whitaker [38], we have used

1

V
∫
Aμσ,ω

nμσ · DAμ∇CAμ dA = avωhω(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) (A.19)

nd aνωhω is a volumetric film mass transfer coefficient. Substituting Eqs. (A.6) and (A.7) in Eqs. (A.17) and (A.18), respectively
ive

εσω
∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t
+Kμσeq

∂{CA}ω
∂t

= ∇ · (DAμεσω∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)) + ∇ ·Kμσeq

[
DAμI + DAμ

Vμ

∫
Aμσ,ω

nμσbμ dA

]
· ∇{CA}ω

+[ε−1
μωK

μσ
eq avωhω − εσωkμ](Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) − kμK

μσ
eq {CA}ω +Kμσeq kμ

〈CBμ〉μω
Kμ

(A.20)

Kμσeq
∂{CA}ω
∂t

− εμω
∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t

= −∇ · [εμωDAσ∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)] + ∇ ·
[
DAσK

μσ
eq I + DAσ

Vσ

∫
Aσμ,ω

nσμbσ dA

]
· ∇{CA}ω

−[avωhωε
−1
σω − kσ〈CRσ〉σωεμω](Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) − kσ〈CRσ〉σωKμσeq {CA}ω − kσ〈bσbRσ〉σω : ∇{CA}ω∇〈CRσ〉σω

(A.21)

Note that in the above equations we have neglected the spatial variations of the volume fractions. Subtracting Eq. (A.21) from
q. (A.20) yields

∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t
= ∇ · [DAσμ∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)] + ∇

× ·
[

(DAμ − DAσ)Kμσeq I + DAμ

Vμ,ω

∫
Aμσ,ω

nμσKμσeq bμdA+ DAσ

Vσ,ω

∫
Aσμ,ω

nμσbσdA

]
· ∇{CA}ω

+ [ε−1
μωK

μσ
eq avωhω + avωhωε

−1
σω − εσωkμ − kσ〈CRσ〉σωεμω](Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

+ (kσ〈CRσ〉σω − kμ)Kμσeq {CA}ω +Kμσeq kμ
〈CBμ〉μω
Kμ

+ kσ〈bσbRσ〉σω : ∇{CA}ω∇〈CRσ〉σω (A.22)
here we have used the following definition

DAσμ = εμωDAσ + DAμεσω (A.23)

owever, from the closure problem statement, it is possible to obtain
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At the σμ-interface,

Kμσeq bμ = bσ + nσμα(Kμσeq )2 + nσμ · αKμσeq ∇bσ (A.24)

n this way, let us define Cμσ = Cμσ I, where

Cμσ
DAμ − DAσ

= DAμ

εμωV
∫
Aμσ,ω

nμσKμσeq bμ dA+ DAσ

εσωV
∫
Aσμ,ω

nμσbσ dA

=
[
DAσμ

εμωεσω

]
1

V
∫
Aσμ,ω

nμσbσ dA+ DAμαK
μσ
eq

εμωV
∫
Aμσ,ω

nμσnσμ · (Kμσeq I + ∇bσ) dA (A.25)

o that Eq. (A.22) can be put as

∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t
− ∇ · [DAσμ∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)]

−[(ε−1
μωK

μσ
eq + ε−1

σω )avωhω − εσωkμ − kσ〈CRσ〉σωεμω](Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

= ∇ · [(DAμ − DAσ)(Kμσeq I + Cμσ)] · ∇{CA}ω + (kσ〈CRσ〉σω − kμ)Kμσeq {CA}ω

+Kμσeq kμ
〈CBμ〉μω
Kμ

+ kσ〈bσbRσ〉σω : ∇{CA}ω∇〈CRσ〉σω (A.26)

The order of magnitude of the LHS of Eq. (A.26) is

∂(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)

∂t
− ∇ · [DAσμ∇(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω)] − [(ε−1

μωK
μσ
eq + ε−1

σω )avωhω − εσωkμ − kσ〈CRσ〉σωεμω]

×(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) =
{

O
(

1

t∗

)
+ O

(
DAσμ

LC1LC

)
+ O

(
avωhω

εσωεμω

)
+ O(εσωkμ + kσ〈CRσ〉σωεμω)

}
×(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) (A.27)

While the order of magnitude estimate of the LHS of Eq. (A.26) is given by

∇ · [(DAμ − DAσ)(Kμσeq I + Cμσ)] · ∇{CA}ω + (kσ〈CRσ〉σω − kμ)Kμσeq {CA}ω + kσ〈bσbRσ〉σω : ∇{CA}ω∇〈CRσ〉σω

=
{

O
(DAμ − DAσ)(Kμσeq + Cμσ)

LCLC1
+ O(kσ〈CRσ〉σω − kμ)Kμσeq + O

(
kσ〈CRσ〉σω�2

σ

L2
C

)}
{CA}ω (A.28)

To obtain Eqs. (A.27) and (A.28) we have considered that

〈CBμ〉μω
Kμ

= O(〈CAμ〉μω) = O
(
εσω

K
μσ
eq

(Kμσeq 〈CAμ〉μω − 〈CAσ〉σω) + {CA}ω
)
, bσbRσ = O(�2

σ) (A.29)

Substituting the estimates given in Eqs. (A.27) and (A.28) in Eq. (A.26) gives

K
μσ
eq 〈CAμ〉μω − 〈CAσ〉σω

(
�2
σμ

)

{CA}ω

= O
LCLC1

×{((DAμ − DAσ)(Kμσeq + Cμσ)/DAσμ) + (LC1/LC)[(�2
σ −�2

μ)Kμσeq +�2
σO(�2

σ/L
2
C)]}

{1 + O(�2
σμ/DAσμt

∗) + O(�2
σμ/LC1LC) + O(εσω�2

μ +�2
σεμω)�2

σμ/L
2
C} (A.30)

here we have employed the mixed-mode small length scale is given by

�2
σμ = εσωεμωDAσμ

avωhω
(A.31)
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nd the large-scale Thiele modulus

�2
σ = kσ〈CRσ〉σL2

C

DAσμ
, �2

μ = kμL
2
C

DAσμ
(A.32)

In most processes, unless the interfacial mass transfer resistance governs the macroscopic transport, the following estimates are
easonable

�2
σμ

LCLC1
� 1 (A.33)

�2
σμ

DAσμt∗
� 1 (A.34)

Therefore, Eq. (A.30) reduces to

K
μσ
eq 〈CAμ〉μω − 〈CAσ〉σω

{CA}ω
= O

(
�2
σμ

LCLC1

)
(A.35)

The use of this result in the restrictions given in Eqs. (A.8)–(A.10) leads to the desired length scale constraints

εμωεσω(1 −K
μσ
eq )�2

σμ

DAωK
μσ
eq t∗

� 1 (A.36)

εμωεσω(DAμ −K
μσ
eq DAσ)

K
μσ
eq DAω

(
�2
σμ

LCLC1

)
� 1 (A.37)

(�2
μ −Kμσeq �

2
σ)
DAσμεσωεμω

DAωK
μσ
eq

(
�2
σμ

L2
C

)
� 1 (A.38)

From the above equations, it can be concluded that the assumption of local mass equilibrium is valid when:

Either εμσ or εσω is much less than the unity.
The difference between the physicochemical coefficients of the σ-phase and the μ-phase is negligible.
Constraints (A.33) and (A.34) are satisfied.

ppendix B. Derivation of closure problem for jump condition

In this appendix, the boundary-value problems for the variables that map the average concentrations onto the local concentration
patial variations are presented. Since the jump boundary condition (82) is expressed in terms of point variables, let us first use the
ray’s [40] spatial decomposition

CAα = 〈CAα〉α + C̃Aα, (B.1)

n Eq. (82) to obtain

−nηω · (DAω · ∇{CA}ω) = 〈Pσμ(〈CAσ〉σ −Kμσeq 〈CAμ〉μ + C̃Aσ −Kμσeq C̃Aμ)〉σμ
ηω

+ 〈Pγμ(〈CAγ 〉γ −Kμγeq 〈CAμ〉μ + C̃Aγ −Kμγeq C̃Aμ)〉γμ
ηω

(B.2)

In addition, each one of the concentration spatial deviations C̃Aα can be related to the average concentrations by writing associated
ocal deviation problems. These can be obtained by subtracting from the point equations (1)–(5) the respective non-closed macroscopic
quations [(32), (26–29)], to obtain

σ-phase
∂C̃Aσ

∂t
= DAσ∇2C̃Aσ − 1

Vσ(x)

∫
Aμσ

nσμ · DAσ∇C̃Aσ dA− ε−1
σ (x)∇ ·

[
DAσ

V
∫
Aσμ

nσμΔ〈CAσ〉σ dA

]
− kσCAσCRσ + kσ〈CAσCRσ〉σ (B.3)
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∂C̃Rσ

∂t
= DRσ∇2C̃Rσ − ε−1

σ (x)∇εσ(x) · [DRσ∇〈CRσ〉σ]

− ε−1
σ (x)∇ ·

[
DRσ

V
∫
Aσμ

nσμ∇〈CRσ〉σ dA

]
− kσCAσCRσ + kσ〈CAσCRσ〉σ (B.4)

μ-phase

∂C̃Aμ

∂t
= DAμ∇2C̃Aμ − kμ

(
C̃Aμ − C̃Bμ

Kμ

)
− 1

Vμ(x)

∫
Aμσ

nμσ · DAμ∇C̃Aμ dA

− 1

Vμ(x)

∫
Aμγ

nμγ · DAμ∇C̃AμdA− ε−1
μ (x)∇ ·

(
DAμ

V

[∫
Aμσ

nμσΔ〈CAμ〉μ dA+
∫
Aμγ

nμγΔ〈CAμ〉μ dA

])
.

(B.5)

∂C̃Bμ

∂t
= DBμ∇2C̃Bμ + ε−1

μ (x)∇εμ(x) · [DBμ∇〈CBμ〉μ] + kμ

(
C̃Aμ − C̃Bμ

Kμ

)

+ ε−1
μ (x)∇ ·

[
DBμ

V

(∫
Aμσ

nμσ�〈CBμ〉μ dA+
∫
Aμγ

nμγ�〈CBμ〉μ dA

)]
(B.6)

γ-phase

∂C̃Aγ

∂t
= DAγ∇2C̃Aγ − ε−1

γ (x)∇ ·
[

DAγ

V
∫
Aγμ

nγμ�〈CAγ 〉γ dA

]
− 1

Vγ (x)

∫
Aμγ

nγμ · DAγ∇C̃Aγ dA (B.7)

In the above equations, we have already imposed the following length scale constraint, that can be satisfied based on the disparity
f the local and macroscopic length scales

�α

L
� 1, α = σ,μ, γ (B.8)

nd introduced the following definitions,

�〈Ciα〉α = 〈Ciα〉α|x+yα − 〈Ciα〉α|x, i = A,B,R; α = σ,μ, γ (B.9)

The interfacial boundary conditions associated with Eqs. (B.3)–(B.7) are obtained by substituting the concentration spatial
ecompositions in Eqs. (8)–(13)

At the σμ-interface

nμσ · DAσ∇C̃Aσ − nμσ · DAμ∇C̃Aμ = nμσ · DAμ∇〈CAμ〉μ − nμσ · DAσ∇〈CAσ〉σ︸ ︷︷ ︸
surface diffusive source

(B.10)

−nσμ · DAσ∇C̃Aσ − Pσμ(C̃Aσ −Kμσeq C̃Aμ) = nσμ · DAσ∇〈CAσ〉σ︸ ︷︷ ︸
surface diffusive source

+ Pσμ(〈CAσ〉σ −Kμσeq 〈CAμ〉μ)︸ ︷︷ ︸
surface exchange source

(B.11)

−nσμ · DRσ∇C̃Rσ = nσμ · DRσ∇〈CRσ〉σ (B.12)

−nμσ · DBμ∇C̃Bμ = nμσ · DBμ∇〈CBμ〉μ (B.13)

At the μγ-interface

nμγ · DAγ∇C̃Aγ − nμγ · DAμ∇C̃Aμ = nμγ · DAμ∇〈CAμ〉μ − nμγ · DAγ∇〈CAγ 〉γ︸ ︷︷ ︸
surface diffusive source

(B.14)

μγ γ γ μγ μ
−nγμ · DAγ∇C̃Aγ − Pγμ(C̃Aγ −Keq C̃Aμ) = nγμ · DAγ∇〈CAγ 〉︸ ︷︷ ︸
surface diffusive source

+ Pγμ(〈CAγ 〉 −Keq 〈CAμ〉 )︸ ︷︷ ︸
surface exchange source

(B.15)

−nμγ · DBμ∇C̃Bμ = nμγ · DBμ∇〈CBμ〉μ (B.16)
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Using Taylor series expansions of the intrinsic average concentrations about the centroid of the averaging volume [28], the
oncentration difference defined by Eq. (B.9) can be assumed negligible when the following constrains are satisfied

r0

L
� 1;

r2
0

L2 � 1;
�μ

10L
εμω � 1;

εμω

20

�μr0

L2 � 1 (B.17)

Therefore, Eqs. (B.3)–(B.7) can be written as,

σ-phase

DAσ∇2C̃Aσ = 1

Vσ(x)

∫
Aμσ

nσμ · DAσ∇C̃Aσ dA+ kσC̃Aσ〈CRσ〉σ + kσ〈CAσ〉σC̃Rσ + kσC̃AσC̃Rσ − kσ〈C̃AσC̃Rσ〉σ (B.18)

DRσ∇2C̃Rσ = ε−1
σ (x)∇εσ(x) · [DRσ∇〈CRσ〉σ] + kσC̃Aσ〈CRσ〉σ + kσ〈CAσ〉σC̃Rσ + kσC̃AσC̃Rσ − kσ〈C̃AσC̃Rσ〉σ (B.19)

μ-phase

DAμ∇2C̃Aμ = kμ

(
C̃Aμ − C̃Bμ

Kμ

)
+ 1

Vμ(x)

∫
Aμσ

nμσ · DAμ∇C̃Aμ dA+ 1

Vμ(x)

∫
Aμγ

nμγ · DAμ∇C̃Aμ dA (B.20)

DBμ∇2C̃Bμ = −ε−1
μ (x)∇εμ(x) · [DBμ∇〈CBμ〉μ] − kμ

(
C̃Aμ − C̃Bμ

Kμ

)
(B.21)

γ-phase

DAγ∇2C̃Aγ = 1

Vγ (x)

∫
Aμγ

nγμ · DAγ∇C̃Aγ dA (B.22)

In the above equations we have imposed the following length scale constraints,

Diαt
∗

�2
α

	 1 α = σ,μ, γ i = A,B,R (B.23)

hich allowed neglecting the accumulation terms in Eqs. (B.18)–(B.22). Moreover, the characteristic length of the deviations makes
ossible to neglect, for the purposes of the closure problem, the reaction terms in comparison to the diffusive contributions. Let us
ighlight that, according to Wood and Whitaker [42] (see Appendix A.2 therein), it is reasonable to neglect the reaction rate at the
evel of the closure problem even if it plays an important role at the macroscopic level. Indeed, as long as the following constraints
re satisfied

DAσ

�2
σkσC̃Rσ

	 1,
DAσC̃Aσ

�2
σ〈CAσ〉σC̃Rσ

	 1,
DAσ

�2
σ〈CRσ〉σ

	 1,
DAμ

�2
μkμ[1 − C̃Bμ/KμC̃Aμ]

	 1. (B.24)

he deviation equations and boundary conditions for species A take the form

σ-phase

DAσ∇2C̃Aσ = ε−1
σ (x)

V
∫
Aμσ

nσμ · DAσ∇C̃Aσ dA, (B.25)

μ-phase

DAμ∇2C̃Aμ = ε−1
μ (x)

V
∫
Aμσ

nμσ · DAμ∇C̃Aμ dA+ ε−1
μ (x)

V
∫
Aμγ

nμγ · DAμ∇C̃Aμ dA (B.26)

γ-phase

DAγ∇2C̃Aγ = ε−1
γ (x)

V
∫
Aμγ

nγμ · DAγ∇C̃Aγ dA (B.27)
At the σμ-interface

nμσ · DAσ∇C̃Aσ − nμσ · DAμ∇C̃Aμ = nμσ · (DAμ − DAσK
μσ
eq )∇{CA}ω|x0︸ ︷︷ ︸

diffusive source

(B.28)
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Fig. B.1. Representative unit cell for the inter-region.

−nσμ · DAσ∇C̃Aσ − Pσμ(C̃Aσ −Kμσeq C̃Aμ) = nσμ · DAσK
μσ
eq ∇{CA}ω|x0︸ ︷︷ ︸

diffusive source

(B.29)

At the μγ-interface

nμγ · DAγ∇C̃Aγ − nμγ · DAμ∇C̃Aμ = nμγ · DAμ∇{CA}ω|x0︸ ︷︷ ︸
diffusive source

− nμγ · DAγK
μγ
eq ∇{CA}η|x0︸ ︷︷ ︸

diffusive source

(B.30)

−nγμ · DAγ∇C̃Aγ − Pγμ(C̃Aγ −Kμγeq C̃Aμ) = nγμ · DAγK
μγ
eq ∇ {CA}η

∣∣
x0︸ ︷︷ ︸

diffusive source

+ PγμK
μγ
eq ({CA}η|x0 − {CA}ω|x0 )︸ ︷︷ ︸

exchange source

(B.31)

In the above equations we have accepted the validity of the length scale constraints introduced in Appendix C, under which the
ssumption of local mass equilibrium is valid at the closure level. Notice that, by neglecting the reaction rate contribution, only the
oundary-value problem for the spatial deviations of species A has to be considered and not those corresponding to species B and
. This problem has to be solved in a representative unit cell of the inter-region (Fig. B.1). Its height (2h) must be large enough in
rder to impose the following boundary conditions

At y = 2h, C̃Aσ = 0, C̃Aμ = 0, C̃Aγ = 0 (B.32)

At y = 0 C̃Aσ = C̃Aσω, C̃Aμ = C̃Aμω, C̃Aγ = 0 (B.33)

hich are the deviation values in both homogeneous regions. Assuming that the width of the unit cell is small enough in order
o neglect the curvature effects of the membrane, we can impose periodicity conditions in the tangential direction of the dividing
urface

C̃Aα(r + �k) = C̃Aα(r) k = 1, 2; α = σ,μ, γ. (B.34)

The sources in Eqs. (B.28)–(B.31) suggest the following form for the spatial concentration deviations

C̃Aα = sωα {CA}ω + sηα{CA}η + bωα · ∇{CA}ω + bηα · ∇{CA}η (forα = σ,μ, γ) (B.35)

Using these expressions in Eqs. (B.25)–(B.34) gives rise to the boundary-value problems for the closure variables sωα , sηα, bωα and
η
α. The associated differential equations (for these four closure coefficients) have the same form. Therefore, the set of differential
quations can be written in compact form as

Differential equations:

σ-phase

∇2ϕσ = 1

Vσ(x0)

∫
Aμσ

nσμ · ∇ϕσ dA, (B.36)
μ-phase

∇2ϕμ = 1

Vμ(x0)

∫
Aμσ

nμσ · ∇ϕμ dA+ 1

Vμ(x0)

∫
Aμγ

nμγ · ∇ϕμ dA (B.37)
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γ-phase

∇2ϕγ = 1

Vγ (x0)

∫
Aμγ

nγμ · ∇ϕγ dA (B.38)

where ϕα represents the closure coefficients according to

ϕα = sωα , s
η
α,bωα ,bηα, α = σ,μ, γ (B.39)

However the boundary conditions to which Eqs. (B.36)–(B.38) are subjected cannot be summarized easily. They are

At the σμ-interface

nμσ · DAσ∇sλσ = nμσ · DAμ∇sλμ λ = ω, η, (B.40)

nμσ · DAσ∇bωσ − nμσ · DAμ∇bωμ = nμσ(DAμ − DAσK
μσ
eq ) (B.41)

nμσ · DAσ∇bησ = nμσ · DAμ∇bημ (B.42)

−nσμ · DAσ∇sλσ = Pσμ(sλσ −Kμσeq s
λ
μ) λ = ω, η (B.43)

−nσμ · DAσ∇bωσ − Pσμ(bωσ −Kμσeq bωμ) = nσμDAσK
μσ
eq (B.44)

−nσμ · DAσ∇bησ = Pσμ(bησ −Kμσeq bημ) (B.45)

At the μγ-interface

nμγ · DAγ∇sλγ = nμγ · DAμ∇sλμ λ = ω, η (B.46)

nμγ · DAγ∇bωγ − nμγ · DAμ∇bωμ = nμγDAμ (B.47)

nμγ · DAγ∇bηγ − nμγ · DAμ∇bημ = −nμγDAγK
μγ
eq (B.48)

−nγμ · DAγ∇sωγ − Pγμ(sωγ −Kμγeq s
ω
μ) = −PγμKμγeq (B.49)

−nγμ · DAγ∇sηγ − Pγμ(sηγ −Kμγeq s
η
μ) = PγμK

μγ
eq (B.50)

−nγμ · DAγ∇bωγ = Pγμ(bωγ −Kμγeq bωμ) (B.51)

−nγμ · DAγ∇bηγ − Pγμ(bηγ −Kμγeq bημ) = nγμDAγK
μγ
eq (B.52)

At y = 2h ϕα = 0 (B.53)

At y = 0, bωσ = bσ, bωμ = bμ, ϕγ = 0, sωα = sηα = 0, bηα = bηα = 0, α = σ,μ, γ (B.54)

Periodicity

ϕα(r + �k) = ϕα(r) k = 1, 2; α = σ,μ, γ. (B.55)

In addition, in Eq. (B.54) we have used Eq. (54). This concludes the analysis.

ppendix C. Local mass equilibrium for the closure problem of the jump condition

In this section, the length scale constraints associated to the validity of the local mass equilibrium in Vω in the inter-region are
erived. The analysis is based in the analogous case of heat transfer in porous media described by Whitaker (Chapter 2, in Ref. [28]).
n Section 4 we introduced the following expression,

{CA}ω|x0 = εμ(x0)〈CAμ〉μ|x0 + εσ(x0)

K
μσ
eq

〈CAσ〉σ |x0 (C.1)
Associated to this weighted average, the following macroscopic deviations arise

ĈAμ|x0 = 〈CAμ〉μ|x0 − {CA}ω|x0 (C.2)

ĈAσ |x0 = 〈CAσ〉σ |x0 −Kμσeq {CA}ω|x0 (C.3)
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Combining Eqs. (C.1)–(C.3) gives,

〈CAμ〉μ|x0 = {CA}ω|x0 + εσ(x0)

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)
(C.4)

〈CAσ〉σ |x0 = Kμσeq {CA}ω
∣∣
x0

− εμ(x0)Kμσeq

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)
(C.5)

In order to develop the restraints behind the assumption of local mass equilibrium, let us substitute Eqs. (C.4) and (C.5) in the
nterfacial boundary conditions for the spatial deviations of species A to obtain,

At the μσ-interface

nμσ · DAσ∇C̃Aσ − nμσ · DAμ∇C̃Aμ = nμσ · (DAμ − DAσK
μσ
eq )∇{CA}ω|x0

+ nμσ · ∇
[
DAμσ

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)]
(C.6)

−nσμ · DAσ∇C̃Aσ − Pσμ(C̃Aσ −Kμσeq C̃Aμ) = nσμ · DAσ∇(Kμσeq {CA}ω|x0 ) − PσμK
μσ
eq

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)

− nσμ · ∇
[
DAσεμ(x0)Kμσeq

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)]
(C.7)

At the μγ-interface

nμγ · DAγ∇C̃Aγ − nμγ · DAμ∇C̃Aμ = nμγ · DAμ∇{CA}ω|x0 − nμγ · DAγK
μγ
eq ∇{CA}η|x0

+ nμγ · ∇
[
DAμεσ(x0)

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)]
(C.8)

−nγμ · DAγ∇C̃Aγ − Pγμ(C̃Aγ −Kμγeq C̃Aμ) = nγμ · DAγK
μγ
eq ∇{CA}η|x0 + PγμK

μγ
eq ({CA}η|x0 − {CA}ω|x0 )

−PγμKμγeq εσ(x0)

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)
(C.9)

Where we have introduced the following definition,

DAμσ = DAμεσ(x0) + DAσεμ(x0)Kμσeq (C.10)

From Eqs. (C.6)–(C.9) it is obtained that the local mass equilibrium is valid at the closure level, if the following inequalities are
atisfied,

(DAμ − DAσK
μσ
eq )∇{CA}ω|x0 	 ∇

[
DAμσ

K
μσ
eq

(Kμσeq 〈CAμ〉μ|x0 − 〈CAσ〉σ |x0 )

]
(C.11)

∇ {CA}ω
∣∣
x0

	 ∇
[
εσ(x0)

K
μσ
eq

(Kμσeq 〈CAμ〉μ|x0 − 〈CAσ〉σ |x0 )

]
(C.12)

(C̃Aσ,K
μσ
eq C̃Aμ) 	 (Kμσeq 〈CAμ〉μ|x0 − 〈CAσ〉σ |x0 ) (C.13)

{CA}ω|x0 	 εσ(x0), εμ(x0)

K
μσ
eq

(Kμσeq 〈CAμ〉μ|x0 − 〈CAσ〉σ |x0 ) (C.14)
In addition, from Appendix A, the following estimates are obtained

K
μσ
eq 〈CAμ〉μ|x0 − 〈CAσ〉σ |x0

{CA}ω|x0

= O

(
�2
σμ

L2

)
(C.15)
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E. Morales-Zárate et al. / Chemical Engineering Journal 138 (2008) 307–332 329

ere,

�2
σμ = εσ(x0)εμ(x0)DAμσ

av(x0)h(x0)
(C.16)

From Eq. (C.15), the following length scale constraints are obtained when this estimate is substituted in Eqs. (C.11), (C.12) and
C.14),

K
μσ
eq (DAμ − DAσK

μσ
eq )

DAμσ
	 �2

σμ

L2 (C.17)

K
μσ
eq

εσ(x0), εμ(x0)
	 �2

σμ

L2 (C.18)

Notice that the above equations are automatically satisfied if the physical properties of the two phases are equal (i.e., DAμ →
AσK

μσ
eq ) or only one phase is present. If these length scale constraints are satisfied in the inter-region, then Eqs. (C.6)–(C.9) are

implified to,

At the μσ-interface

nμσ · DAσ∇C̃Aσ − nμσ · DAμ∇C̃Aμ = nμσ · (DAμ − DAσK
μσ
eq )∇{CA}ω|x0 (C.19)

−nσμ · DAσ∇C̃Aσ − Pσμ(C̃Aσ −Kμσeq C̃Aμ) = nσμ · DAσK
μσ
eq ∇{CA}ω|x0 − PσμK

μσ
eq

(
〈CAμ〉μ|x0 − 1

K
μσ
eq

〈CAσ〉σ |x0

)
(C.20)

At the μγ-interface

nμγ · DAγ∇C̃Aγ − nμγ · DAμ∇C̃Aμ = nμγ · DAμ∇{CA}ω|x0 − nμγ · DAγK
μγ
eq ∇{CA}η|x0 (C.21)

−nγμ · DAγ∇C̃Aγ − Pγμ(C̃Aγ −Kμγeq C̃Aμ) = nγμ · DAγK
μγ
eq ∇{CA}η|x0 + PγμK

μγ
eq ({CA}η|x0 − {CA}ω|x0 ) (C.22)

In order to develop the constraints associated with Eq. (C.13), let us assume that

C̃Aσ = O(Kμσeq C̃Aμ) (C.23)

Following Whitaker [28] it is desirable to distribute the surface diffusive source ∇{CA}ω|x0 in a manner consistent with the above
quation. To this end, a weighting parameter ϕ∈ [0,1] is introduced, this allows distributing the flux as

nμσ · DAσ∇C̃Aσ = ϕ[nμσ · (DAμ − DAσK
μσ
eq )∇{CA}ω|x0 ] (C.24)

nσμ · DAμ∇C̃Aμ = (1 − ϕ)[nμσ · (DAμ − DAσK
μσ
eq )∇{CA}ω|x0 ] (C.25)

From the above equations, the following order of magnitude estimates are obtained

C̃Aσ = O
[
ϕ�σ

(DAμ − DAσK
μσ
eq )

DAσ

∇{CA}ω|x0

]
(C.26)

C̃Aμ = O
[

(1 − ϕ)�μ
(DAμ − DAσK

μσ
eq )

DAμ

∇{CA}ω|x0

]
(C.27)

The order of magnitude of the weight ϕ is obtained by substituting Eqs. (C.26) and (C.27) in Eq. (C.23) as,

ϕ = O
[

�μDAσK
μσ
eq

�σDAμ + �μDAσK
μσ
eq

]
(C.28)

nd, as consequence,

C̃Aσ = O(Kμσeq C̃Aμ) = O
[
�σ�μK

μσ
eq (DAμ − DAσK

μσ
eq )

�σDAμ + �μDAσK
μσ
eq

∇{CA}ω|x0

]
(C.29)
This result allows determining from Eq. (C.13) (taking in account the estimate in Eq. (C.15)) the following length scale constraint

�σ�μK
μσ
eq (DAμ − DAσK

μσ
eq )

�σμ(�σDAμ + �μDAσK
μσ
eq )

	
(
�σμ

L

)
(C.30)
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For many practical systems the left hand side of the above equation is of the order of one, therefore, if �μσ � L, then the assumption
f local mass equilibrium is satisfied at the closure problem level for the μσ-interface.

ppendix D. Simplifications and order of magnitude analysis for the closed jump condition

In this appendix the simplification of the closed jump boundary condition (Eq. (88))

−nηω · (DAω · ∇{CA}ω) = 〈PγμKμγeq 〉γμ
ηω

({CA}η|x0 − {CA}ω|x0 ) + (〈Pσμ(sωσ −Kμσeq s
ω
μ)〉σμ

ηω
+ 〈Pγμ(sωγ −Kμγeq s

ω
μ)〉γμ

ηω
){CA}ω|x0

+ (〈Pσμ(sησ −Kμσeq s
η
μ)〉σμ

ηω
+ 〈Pγμ(sηγ −Kμγeq s

η
μ)〉γμ

ηω
){CA}η|x0 + (〈Pσμ(bωσ −Kμσeq bωμ)〉σμ

ηω

+ 〈Pγμ(bωγ −Kμγeq bωμ)〉γμ
ηω

) · ∇{CA}ω|x0 + (〈Pσμ(bησ −Kμσeq bημ)〉σμ
ηω

+ 〈Pγμ(bηγ −Kμγeq bημ)〉γμ
ηω

) · ∇{CA}η|x0 (D.1)

s performed by showing that the two last terms in the RHS of the above equation are negligible. Indeed, an order of magnitude
nalysis, based in the results of Appendix B, yields

(〈Pσμ(bωσ −Kμσeq bωμ)〉σμ
ηω

+ 〈Pγμ(bωγ −Kμγeq bωμ)〉γμ
ηω

) · ∇{CA}ω|x0

= O
[(

K
μσ
eq DAσPσμ(1 − �σ/�μ)

Pσμ�σDAμ − (PσμK
μσ
eq �μ − DAμ)DAσ

+ DAγPγμK
μγ
eq

Pγμ�γDAμ − (Pγμ�μK
μγ
eq − DAμ)DAγ

)
DAμ

�μ

L
{CA}ω|x0

]
(D.2)

(〈Pσμ(bησ −Kμσeq bημ)〉σμ
ηω

+ 〈Pγμ(bηγ −Kμγeq bημ)〉γμ
ηω

) · ∇{CA}η|x0

= O
[(

Pσμ(�σDAμ/DAσ −K
μσ
eq �μ) − DAμ

(DAμ −K
μγ
eq Pγμ�μ)DAγ + PγμDAμ�γ

)
PγμK

μγ
eq DAγ

�γ

L
{CA}η|x0

]
(D.3)

Therefore, if the length scale constraints,(
K
μσ
eq DAσPσμ(1 − �σ/�μ)

Pσμ�σDAμ − (PσμK
μσ
eq �μ − DAμ)DAσ

+ DAγPγμK
μγ
eq

Pγμ�γDAμ − (Pγμ�μK
μγ
eq − DAμ)DAγ

)
DAμ

�μ

L
� 1 (D.4)

(
Pσμ(�σDAμ/DAσ −K

μσ
eq �μ) − DAμ

(DAμ −K
μγ
eq Pγμ�μ)DAγ + PγμDAμ�γ

)
PγμK

μγ
eq DAγ

�γ

L
� 1 (D.5)

re satisfied at the inter-region, the jump condition simplifies to

−nηω · (DAω · ∇{CA}ω) = 〈PγμKμγeq 〉γμ
ηω

({CA}η|x0 − {CA}ω|x0 ) + (〈Pσμ(sωσ −Kμσeq s
ω
μ)〉σμ

ηω
+ 〈Pγμ(sωγ −Kμγeq s

ω
μ)〉γμ

ηω
){CA}ω|x0

+ (〈Pσμ(sησ −Kμσeq s
η
μ)〉σμ

ηω
+ 〈Pγμ(sηγ −Kμγeq s

η
μ)〉γμ

ηω
){CA}η|x0 . (D.6)

ubstituting the local permeabilities and equilibrium coefficients’ spatial decompositions [33]

Pαμ = 〈Pαμ〉αμηω + P̃αμ (D.7)

Kαμeq = 〈Kαμeq 〉αμ
ηω

+ K̃αμeq (D.8)

n Eq. (D.6) leads to [28],

−nηω.(DAω · ∇{CA}ω|x0 ) = P
η
eff({CA}η|x0 −K

ηω
eff {CA}ω|x0 ), (D.9)

t the dividing surface.
In the above equation we have introduced the following effective coefficients
Effective permeability of the η-region

P
η
eff = Peff + 〈Pσμ〉σμηω〈K̃μσeq s

η
μ〉σμ
ηω

+ 〈Pγμ〉γμ
ηω

〈K̃μγeq s
η
μ〉γμ
ηω

+ 〈P̃σμsησ〉σμηω + 〈P̃γμsηγ 〉γμηω − 〈P̃σμsημ〉σμ
ηω

〈Kμσeq 〉σμ
ηω

− 〈P̃γμsημ〉γμ
ηω

〈Kμγeq 〉γμ
ηω

− 〈P̃σμK̃μσeq s
η
μ〉σμ
ηω

− 〈P̃γμK̃μγeq s
η
μ〉γμ
ηω

(D.10)



h

R

[

[

[
[
[
[
[
[
[
[

[

[
[

[
[

[
[
[
[
[
[

[

[

[
[
[
[
[
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Effective permeability of the ω-region

Pωeff = Peff − 〈Pσμ〉σμηω〈K̃μσeq s
ω
μ〉σμ
ηω

− 〈Pγμ〉γμ
ηω

〈K̃μγeq s
ω
μ〉γμ
ηω

− 〈P̃σμsωσ 〉σμηω − 〈P̃γμsωγ 〉γμ
ηω

+ 〈P̃γμsωμ〉γμ
ηω

〈Kμγeq 〉γμ
ηω

+ 〈P̃σμsωμ〉σμ
ηω

〈Kμσeq 〉σμ
ηω

+ 〈P̃γμK̃μγeq s
ω
μ〉γμ
ηω

+ 〈P̃σμK̃μσeq s
ω
μ〉σμ
ηω

(D.11)

Effective equilibrium coefficient of the ω–η inter-region

K
ηω
eff = Pωeff

P
η
eff

(D.12)

ere Peff = 〈Pγμ〉γμ
ηω

〈Kμγeq 〉γμ
ηω

+ 〈P̃γμK̃μγeq 〉γμ
ηω

can be computed from the local spatial distribution of Pγμ and Kμγeq .
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