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Abstract

A macroscopic modeling of diffusion and chemical reaction in double emulsion systems using the method of volume-averaging is presented.
In this three-phase system, chemical reaction takes place in the drops and membrane phases (w-region) while passive diffusion is considered in
the continuous external phase (n-region). First, a generalized one-equation model, free of the usual length scale constraints, is derived in order to
describe the solute transfer in both homogeneous regions and in the w—n inter-region. The up-scaling in the w-region is based in the local mass
equilibrium assumption between the two phases. Equations in both homogeneous regions are deduced from the generalized one-equation model.
Then, the jump boundary condition at the dividing surface is derived and associated closure problems are established in order to calculate the jump
coefficients.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This study deals with the analysis of diffusion and chemical reaction in a system composed by three phases (Fig. 1) where the
external phase (y-phase) contains dispersed drops called membrane phase (u-phase), themselves containing small dispersed droplets
(o-phase). This system is similar to double emulsions which are used in many extraction processes such as hydrocarbons fractioning
[1,2], recuperation of rare component ions [3], recovery of metals [4], purification of fatty esters [5], elimination of contaminants
in aqueous streams [6], and the concentration of pharmaceuticals [7]. The so-called liquid surfactant membrane has been used for
lactic acid extraction [8] and to explore enzymatic reactions [9]. Moreover, the study of gas dispersion and mass exchange between
bubbles and emulsion phases, including interfacial mass transfer, (with and without chemical reaction) is essential in order to model
mass transfer in fluidized beds [10,11]. In addition, a clear study of the rheology in double emulsion systems has been recently,
performed by Pal [12]. These extraction processes involve the transport of a solute of interest (species A) from the external phase
(y-phase) to the droplets (o-phase). The transport is based in the difference of solubility of the several phases and is increased
by means of a reversible chemical reaction in the p-phase while an irreversible reaction takes place in the o-phase. This type of
membrane separation represents a relatively new unit operation which, ultimately, is expected to replace a significant proportion
of conventional separation processes [13]. Unlike classical process such as distillation, extraction, and crystallization, membrane
separation generally does not involve phase transition and therefore requires lower energy consumption.

Theoretical studies of diffusion and reaction in double emulsions have been carried out [1,3,14—24] but most of the works have
been focused in the solution of the differential equations. Most of the models are based in intuitive considerations that could lead to
rough approximations and inaccurate interpretation of experimental results. In their large majority, these models implicitly consider
average equations where macroscopic quantities are not explicitly related to local values and therefore prediction of the effective
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Nomenclature

Along the paper, “a” is used to indicate variables or parameters associated with the phase y, | or o; “A” with the region 1

or w, and “i” with the species A, B or R.

ak’ droplet interfacial volumetric area (m™ 1

Ao external surface of the large-scale averaging volume V

Aj external surface of V),

Apw dividing surface between n- and w-regions

Apa surface of the u—« interface in the averaging volume

b, vector that maps V{Ca},, onto C 44 (m)

biu vector that maps V (Cj,)* onto Ciq, i=B, R (m)

bg vector that maps V{Cy }, onto C 44 (m)

{C4}  generalized volume averaged concentration (mol/m?)

Cia local concentration of species i(A, B, R) in the «-phase (mol/m?)

Dy molecular diffusivity of species i(A, B, R) in the «-phase (m3/s)

D,(x) position-dependent effective diffusivity tensor of species A in the generalized one-equation model (m?/s)
D;, position dependent effective diffusivity tensor of species i(4, B, R) in generalized average equation for (Cje)* (m?/s)
D;. effective diffusivity tensor of species i(A, B, R) in the homogeneous w-region (m?/s)
h half of the length of the unit cell for the inter-region (m)

ks reaction rate constant in the o-phase (rn3 (mols)~1)

ky reaction rate constant in the p-phase (s™hH

K, equilibrium reaction constant p-phase

K é‘q“ equilibrium distribution coefficient for the solute A between the p-phase and a-phase; a =0, y
(Ké‘q“)‘;g area average of Kgqa; a=0,y

Kl¢  effective equilibrium coefficient at the w7 dividing surface

| unit tensor

£ unit cell size (m)

Ly characteristic length for «-phase (m)

L characteristic length for volume averaged properties (m)

Ngyp normal unit vector directed from the «-phase towards the S-phase

ng,, unit normal vector directed from the w-region towards the n-region

Naa molar flux of species A corresponding to the a-phase (mol/m? s)

Poy membrane permeability at the o = o, y interface (m/s)

(Pw)f"f: area average of Py, m/s, =0, y

Péff effective permeability in the A-region (m/s)

0 radius of the averaging volume (m)

R(x) position-dependent effective reaction rate (mol (s m3)~1)

R, local reaction rate in the a-phase (mol (s m3)~1)

sf;t closure variable that maps {Ca}; onto Cay; @ =0, , ¥, A=,

t time (s)

i characteristic process time (s)

y averaging volume (m?®)

Vo large-scale averaging volume (m?)

Va volume of the a-phase contained in the averaging volume (m?)

X position vector locating the centroid of averaging volume (m)

Yo position vector used to locate points in the a-phase relative to the centroid of averaging volume (m)

Greek letters

&(x) position-dependent mixed-mode volume fraction defined in Eq. (39)
Ea volume fraction of the a-phase

Subscripts

s identifies excess quantities

0 at the dividing surface

o identifies a quantity associated to the a-phase, (o, u, )

A identifies a quantity associated to the A-region, A(n, ®)
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Special notation

Yo spatial local deviation of variable v, from the average value (/)%
Ve spatial macroscopic deviation of average variable (/4 )*

(¥q)  superficial average value of ¥,

(V)* intrinsic average value of ¥,

coefficients is not considered. However, recent studies have been devoted to the development of multiscale models of three-phase
systems (such as gas—liquid—solid) in fluidized beds [25]. Important improvements (in macroscopic modeling) have been achieved
for diffusion and reaction in other three-phase systems such as biofilms or cellular systems [26,27] which are based in the application
of the method of volume averaging [28]. In these cases, the effective diffusivity tensor involved in the macroscopic description is
predicted by means of closure problems which have been solved for simplified geometries.

In the mentioned three-phase system, the concentration equation in the membrane phase (w-region) has been represented by a
“one average transport equation model”, similar to the one obtained in Ref. [29]. This equation is coupled to the transport equation
in the external n-region by appropriate boundary conditions. However, the length scale constraints imposed through the derivation
of the single average equation in both the n- and w-regions are not satisfied in the w—n inter-region where rapid spatial variations of
the effective properties are present. Several authors have shown, in the context of volume averaging method, that this difficulty can
be solved by the introduction of a jump condition for the mass flux of concentration. This condition applies at the dividing surface
that replaces the w—n inter-region [30,31,37].

The objective of this work is to provide a macroscopic modeling analysis of diffusion and reaction in double emulsion systems
and to derive the jump boundary condition at the dividing surface. This is done using the method of volume averaging. The paper is
organized as follows: the local conservation equations for the three-phase system are presented in Section 2 and averaged in Section
3. Then, a generalized one-equation model is derived (Section 4) in order to describe the solute transfer in the whole three-phase
system (both in the homogeneous w- and n-regions and in the w—n inter-region). The up-scaling in the w-region is based in the
local mass equilibrium assumption between droplets and liquid membrane. Equations in both homogeneous w- and n-regions are
deduced from the generalized equation. Finally, on the basis of previous studies [31-33] the macroscopic jump condition is derived
in Section 5 and its closed form is presented in Section 6. The effective transport coefficients involved in this jump condition are
related to closure variables which are solutions of associated boundary-value problems.

2. Local equations
Let us consider the three-phase system illustrated in Fig. 1 where two homogeneous regions are identified. The w-region is

composed by a continuous membrane phase (u-phase) and small disperse droplets (o-phase) while the n-region corresponds to the
external continuous y-phase surrounding the w-region. In this three-phase system, it is assumed that species A is transferred from

Scale I

n-region

o-region
y—phase

Secale 11T

Fig. 1. Three-phase system. Scale I corresponds to the macroscopic system; Scale II represents a sample of the liquid membrane drops surrounded by the external
y-phase while Scale I illustrates droplets in the membrane phase.
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the n-region to the w-region. In this latter region an irreversible reaction (A + R — P) takes place in the o-phase while a reversible
reaction A = B occurs in the p-phase. The formulation of the problem is restricted to dilute solutions where convective transport
is neglected. However, it captures the main characteristics that are pursued in a double emulsion separation system. The effect of
convective transport in the y-phase will be presented in a future work.

The local equations governing the diffusive mass transfer with chemical reactions process are

o-phase
aC
a;“’ =V - (DarVCas) — Ry, (1)
oC
;" =V - (DroVCro) — Ro. @)
u-phase
aC
# =V - (DauVCapn) — Ry, 3)
aC
af“ =V - (Dp,VCp) + Ry. 4)
y-phase
aC
==V (DayVCay). )

The kinetics of the two chemical reactions occurring in the o- and p-phases are given, respectively by

RO’ = kaCA(rCRm (6)
()
Ry = k. <cAﬂ - KB“> . ™)
nw

Eq. (6) considers the possibility of increasing the separation capability of the system by eliminating the solute in the inner phase
[14,23]. Eq. (7) includes the facilitated transport mechanism in the membrane phase [3,4,7]. In this way, although the two kinetic
expressions have been taken to be simple, the essence of the separation problem is maintained. Egs. (1)—(5) are associated to the
following interfacial boundary conditions

at the ou-interface,

N5 - DapVCay = —Myo - DasVCas (®)
Doy - DaocVCag = Pop(Cac — KL Cap) ©
—Ngy - DpgVCprs =0 (10)
o DpuVCpy =0 11

at the wy-interface,

—yy DA,uVCAu = —Dyy - DAyVCAy (12)
—ny, - DayVCay = Pyu(Cay — Kb Cayp) 13)
—ny,, - D, VCpy = 0. 14

Egs. (8), (9), (12) and (13) have been derived following Wood and Whitaker [26]. For conciseness, details are not provided in
the present paper but it can be shown that coefficients Py, Py, K é‘q" and K é‘qV are functions of local equilibrium constants. In the
above equations n,,, represents the unit normal vector directed from the j1-phase towards the o-phase. In Egs. (9) and (13), Ké‘q“ and
Kgqy are the equilibrium distribution coefficients for the solute A, while the membrane permeability of the ot~ and yu-interfaces
are given by Py, and P, respectively. On the other hand, Egs. (10), (11) and (14) indicate that the solutes B and R are restricted to
the - and o-phases, respectively. In order to provide a generalized one-equation model for the whole three-phase system, the local
equations are up-scaled, in the next section, using the method of volume averaging.
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Inter-region

n-region

Fig. 2. Averaging volume of radius ry to obtain average concentrations and equations at Scale I1.

3. Volume averaging

Let us consider an averaging volume V (Fig. 2) that can be located in the double emulsion system including the w—n inter-region
where rapid spatial variations of the geometric properties are present. In terms of this averaging volume, two averaging operators
arise [28], namely the superficial average of a quantity v,,, defined in the j1-phase

1
(Yu) = 55 4 (15)
Vv,
and the intrinsic average, given by

1
(‘/f//)u = 5, Iﬂu dv. (16)
Vi Vu(x)

These two averages are related by

(V) = e ()W) a7

where ¢,(xX) is the volume fraction occupied by the u-phase within the averaging volume. Although V is constant, it is important
to note that the volumes of each phase may change with the location of the averaging volume, which is determined by the vector x
(Fig. 2). This idea can be expressed more precisely by

V= "V,x)+ V,(x) + V) (x) (18)
and therefore
eo(X) + £, (X) + 6, (x) = 1. (19)

In Eq. (19), the spatial dependence of the three-phase volume fractions has been kept explicit since they undergo significant
spatial variations in the inter-region. Notice that in the homogeneous w-region only the o- and pw-phases are present, and therefore
&5 +&, =1 and &, =0. On the other hand, in the homogeneous n-region &, =1 (&5 = £, =0). Since the membrane phase (u-phase) is
in contact with the other two phases, the averaging procedure is first performed in Egs. (3) and (4). In this way, an average form of
Egs. (1), (2) and (5) will be easily deduced from the average equation obtained for the membrane phase.

Applying the superficial average operator to Eq. (3) gives

aC
< 8?M> = (V- (DapVCap)) = (Ry). (20)
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The initial statement of the problem assumes the microstructure to be time-independent, therefore V,, is constant and integration
and differentiation can be interchanged in the left hand side (LHS) of Eq. (20) leading to

{(Cau)
o = (V- (PapVCaw) — (Ry). @D
Applying the spatial averaging theorem [34] to the first term of the right hand side (RHS) of Eq. (21) yields
(Cap) 1 1
= V(D VCapu) + v N, Dy, VCyydA + v/, n,, - Dy, VCaydA —(Ry) (22)
no ny

Assuming that D 4, is constant within the averaging volume and using again the spatial averaging theorem leads to

1 1
Dap | V(ICap) + */ n,;Cap dA + 7/ n,,CsudA
VJa v Apy

no

(Cap)
ot

—V.

1 1
+—/ nMU~DAMVCAMdA+—/ Ny DauVCaudA — (R,). (23)
VY JAu, Y Ja

wy

In terms of intrinsic averaged quantities, Eq. (22) can be rewritten under the form

(Ca ) 1 1
sﬂ(x)% =V [6,()Day - V(Cap)*1+ 17/ N, - DauVCayudA + 7/ n,, - DauVCaudA — e, (X)(R,,)"
Aus Ay
/ wy (24)
where we introduced the position-dependent diffusivity tensor Dy4,, given by
"o uy Dau 1" "
Dap - V{ICa)" =DapV(Cap)" + v n,6(Cap — (Cap)™)dA + 0, (Cap — (Cap)")dA| . (25)
I3 Ao Al‘-)’
Substituting Eq. (7) in Eq. (24) gives
(Cap)* 1
SM(X)$ =V. [E[L(X)DAM . V(CAI,L)M] + ‘*)/ n,q - DAMVCAM dA
Ao
1 Cp VW
+= n,, - Dy VCaydA —g,(X)k, ((CAM)" — <B“)) . (26)
A% Ay K,

To obtain the above equation, the spatial changes of k,, and K, within the averaging volume have been neglected. At this stage,
note that Eq. (26) has been derived without the use of any length scale constraints and therefore it is valid in both the homogeneous
and heterogeneous regions. Finally, let us remark that, due to its lineal form, the average kinetics in Eq. (26) are of the same form
than the point equation given by Eq. (7). This will not be the case for the average equation of the globular phase.

Similarly to species A, the average equation for species B is given by

3(Cp )"
eu(x)i( a‘;")

Cp M
=V - [e,(x)Dpy - V(Cpu)*1+ e, (X)k,, ((CAM)M _4 I§M> > 27
m

where Dp,, has the same form as D4, (Eq. (25)).
An analogous averaging procedure applied to Egs. (1) and (5) leads to

3(Car) 1
£,(X) { 8/*[” =V - [6,(x)Day - V(Cap)]+ 7/A n,, - D, VCy, dA (28)
ny
3(Cacs)? o 1 o o o
(X)) ——— =V - [66(X)D4s - V(Ca0s)’1 + T)/A Ngy - DoV CasdA — e6(X)ks{(Cac)° (Cro)® — EG(X)<RG)exc (29)

where the following definition has been introduced

Dy

D4 - V(Cai)' = DaiV(Cai)' + / n;,(Cai — (Can))dA i=o0,y. (30)
Aiu

i
In order to avoid the imposition of any length scale constraints, the following representation is adopted for the reaction term

(R)” = ko (Cac)"(Cro)” + (Ro)ye 3D
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in which (Ry)J, . represents the excess reaction contribution. As shown in Appendix A, this term is found to be negligible in the
homogeneous-w region when local mass equilibrium is satisfied. Finally, averaging Eq. (2) and introducing the zero mass-flux
interfacial condition yields

{Cro)°
ea<x>(a%) = V- (60 (0Dgo - V(Cro)*] = £0(0ko (Cao)® (Cro)” — 60 (X) (Ro)ose. (32)

with D, similar to D 4.
4. Generalized one-equation model

In order to develop the one-equation model for diffusion and reaction of the solute A, we must recall the principle of local mass
equilibrium, which is based in the assumption that the mass transfer process can be characterized by a single concentration. This
principle has been used by Whitaker [35] to obtain a one-equation model in a micropore—macropore system. On the other hand,
the principle of local mass equilibrium has been used to describe the diffusion and reaction process in cellular media, in terms of a
one-equation model [26,29].

Keeping that idea in mind, the following equilibrium weighted average concentration is proposed for the generalized one-equation
model

[Ca} = £, ()(Cap)" + glgéq’?ww’ + ‘j@?wmy (33)

along with the macroscopic spatial deviation concentrations given by

Cap = (Cap)* —{Ca} (34)
Cao = (Cao)” — Ki{Ca} (35)
Cay = (Cay)” — KLI{Ca). (36)

These deviations are zero under local mass equilibrium conditions and are negligible when certain length scale constraints are
satisfied. Using the above definitions in the result of adding Eqgs. (26), (28) and (29) yields after some manipulations [36]

Mol _ v a0 ViCa - R~ B 4 v koo o7

non-equilibrium terms

&(x)

where the following definitions have been introduced

Effective reaction rate term

— no o (CBM)M
R(X) = 80’(X)kUKeq {CA}<CRO'> + 8u(x)ku {CA} - T (38)
i
Mixed volume fraction
&(x) = g, (x) + 8U(X)Ké‘q‘7 + 8y(X)Ké‘q” (39)

Position dependent diffusivity tensor

3
Da(X) - V{Ca) = (£u(0Dayi + (KL Dpo + £, 0Dy KENVICA) + 3 /A N
=2 i

E00DAi ¢, <cA,»>")] aA (40)

D
y [”““(")A“(cfm — -2

Vi

In addition, the non-equilibrium terms are given by

Non-equilibrium accumulation

N 3 ~
05(x) _ 3 e aC 1)
i=1

Ai
ot o’
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Non-equilibrium diffusion

3
d= Zei(X)DAiVC'Ai, (42)

i=1
Non-equilibrium reaction

R(xX) = e6(X)koCac(Cro) + £,k Cap + 86(X) (R (43)

Let us remark that expressions (39) and (40) have been obtained assuming that Kgqo and Kéfly are constants. In Egs. (40)—(42) we
haveused 1 =pu;2=0;3=y.
In addition, note that in both homogeneous regions, the following length scale constraints are satisfied

b, by K10, 13K LeiLe (44)

which allow simplifying Eq. (40) as shown later.

Eq. (37) is the generalized mass transfer equation for solute A valid everywhere in the whole system since its derivation does
not involve the use of the usual length scale constraints at all. As consequence, Eq. (37) can be used to obtain the corresponding
effective medium equations for the homogeneous portions of the system, this is carried out below.

4.1. Homogeneous n-region
This region is only composed by the y-phase (i.e., £,(x) =1 and &, (X) = £5(x) =0). When the averaging volume is small enough,
(Lo, £, <K 10) [32], Eq. (37) reduces to

9{Ca},
ot

where {Cy },, represents the concentration field in the 7-region.

=V - [DayV{Cal,] (45)

4.2. Homogeneous w-region

In this two-phase region, the j.- and o-phases have volume fractions with negligible spatial variations (i.e., £,(x) =0; £, (X) = €400
and &,(X) =¢&4). This implies that the characteristic length constraints given in Eq. (44) are satisfied. Under such circumstances,
Eq. (37) reduces to

{Caly

(Suw + &ow Kéfqg) o

C 23
=V Do+ V{Calol = fowko Kef (Caly (Cro), = Enokn ({cA}w - <Bu>w>

Kll
_80wka<CAJCRo)Z) +V. [gawDAGVCAJ + 8uwDAuVéAu] - euwkuéAM

. dCa dCa
—£00koC o (CRo)gy = Epir—rrt — Eow—r (46)
ot ot
Here, the diffusivity tensor Dy4,, is given by,
1 o -
Do+ VICaky = Daos¥(Calo+ 3 | MurlPauCas — DaoCarldA 7)
Apow
where,
DAO’;,L = SuwDA;L + Ecm)KgElGDAU (48)
and the spatial concentration deviations given by
Cai=Cai—(Cad)l, i=p,o0 49)

In Eq. (46), we have used, (C4 Mﬁ} > Cy wand (Cag)o > C Ao which is only valid when the length constraints given by Eq.
(44) are satisfied. In order to derive the one-equation model, with the only dependent variable {C4 },, the following restrictions are
imposed

aC Ap aC Ao

w027 &V - [Dae - V{Calyl, 50
o +¢ P < [Da {Caly]l (50)

Euw
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Srrw’DAﬂVéA(r + S,uwDA,uVCA/L < Dup - V{Cal,, (51
S/ka CA[L + 8owk CAU<CRO'> <LV. [DAa) V{CA }w (52)

Note that these restrictions are proposed on the basis that the macroscopic deviation terms are negligible with respect to the
diffusive terms in the one-equation model. For conciseness, the length scale constraints allowing the restrictions given in Egs.
(50)—(52) are presented in Appendix A. As consequence Eq. (46) becomes

9{Ca} 1 . N
(E/J,a) + Eongqg % =V. [DAO',LLV{CA}(U] +V. {v/ nl,LO’[DA,LLCA[L —DpsCaosl dA}
now
no o - e o <CBM)M
_SowkoKeq {CA}a)<CRtT>w - Saa)kzr(CAaCRa)w - Suwku {Ca} — T (53)
n

On the other hand, the associated closure problem for the concentration deviation variables [29] suggest that
Caj=b;-V{Caly, Jj=op (54)
Cro =bro - V(Cro) (55)
and therefore Eq. (53) takes the form

3{CA}w (Caul,

Ky
_Eaa)kzr(bRaba)Z) : VV<CRU>Z{CA }a) (56)

(gp,a) + SowKMU) =V. (DAa) . V{CA}w) - Suwku <{CA}¢U - > — &owks K (CRU) {CA}w

where the effective diffusivity tensor for species A in the w-region, takes the form

Do = Dacul + 5, / Ny (D aoby — Diauby) dA. 57)

;1.(7 w

Furthermore, if the following length scale constraint is satisfied

ls ( (58)
Then, Eq. (56) finally reduces to the one-equation model for the homogeneous w-region
(pow + 0w KE] )8{CA}°” =V (Daw - V{Cal,) — (R), (59)
where
(R)y = ek ({CA}w - <CBZ>Z> + Eowko KL (CRo)G{Cal (60)

The components of the effective diffusivity tensor D 4,,, have been previously computed for several configurations [29]. In Eq.
(60), (Cpy)!: and (Cgo)g, are the solutions of the average equations for species B and R, respectively,

NCru)t (Cpu)t,
Ma)ﬂ =V. [8Ma)DBw : V(CB;HZ,] + 5uwku {CA}a) - aad s (61)
ot K[L
9{(Crs)?
w3 = V - [e0uDro - V(Cro)(] = eouko Kb 1CA}{Cro) (62)
which have been obtained from Eqgs. (27) and (32) with the use of following restrictions
V. [8MwDBw : (CBM> 1> 8ua)k CAu,s (63)
\ [gawDRw . (CRU) ] > 8ka CA0<CR0> (64)
In Egs. (61) and (62) the effective diffusivity tensors are defined by
D
Dgo = Dyl + -2~ / n,,bp, dA, (65)
V/‘f A/Law
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Fig. 3. Large scale averaging volume at the w— inter-region that includes the interfacial mass transfer resistance between the y- and p-phases.

D
Di, = Drol + R"/ Ny, bro dA. (66)
Vg Apow

Let us note that Eq. (59) is only valid whenever the local mass equilibrium assumption is satisfied. According to the analysis
performed in Appendix A, the length scale constraints leading to this assumption are more likely to be satisfied in the homogeneous
portions of the w-region, but they actually fail in the w—n inter-region. This is the reason why it is necessary to derive the corresponding
jump boundary conditions that match Eqgs. (45) and (60) at the dividing surface. This is carried out in following sections.

5. Jump boundary condition

In order to derive the jump boundary conditions we first define a large-scale averaging volume V. It is located at the w—n
inter-region (Fig. 3) and contains portions of both homogeneous regions, such as

Voo =Vo+ V. 67)
On the other hand, the area that defines this volume is expressed as
A =Ap + Ay, (68)

where A, and A, denote the external surface areas of the volumes V,, and V;;, respectively. The integration of Eq. (37) over V, and
the use of the divergence theorem yield

{Ca} | 9x(x) {Ca} | (%)
/vw (E(X) ot * ot )dV+/Vn <E(X) ot * ot )dV

=/ nw~[DA(x)~V{CA}+a]dA+/ nn~[DA(X)-V{CA}+&]dA

Ay "

- / [R(X) + R(x)]dV — / [R(X) + R(x)]dV (69)
Ve vy

For convenience, the equilibrium and non-equilibrium accumulation, diffusion and reaction terms were combined accordingly.
Similarly, integrating Eqgs. (45) and (59) over the volumes V), and V,,, respectively leads to

{Cal,
/V Tdv = /1; n, - (DAyV{CA}n) dA + /* ny, - [DAyV{CA}n] dA (70)
o dCaly
(Epw + Sachq )T dv = ny - (Day - V{Ca},)dA + Ny, - (Daw - V{C4},)dA — (R),dV (71)
Ve Ay *

nw @

In the above equations, A}, represents the portion of dividing surface A,y contained within Voo, where the macroscopic
jump boundary condition is imposed. The location of this surface can be arbitrarily chosen as the position x=xy where the
y-phase volume fraction is equal to the mean of the corresponding values in the homogeneous regions. The dividing surface
must include the effect of the interfacial mass transfer resistance between the y- and w-phases. Subtracting Eqgs. (70) and (71)
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from Eq. (69) leads to

{Ca} 35<(X) {CA}w H{Ca} | 3xx)  9{Caly
/v(() o — (8uw + 0w KK ) >dv+/v,,(8(X) o + % >dV

=/ nw~[DA<x)-V{cA}+a—DAw~V{CA}w]dA+/ n, - [DAX) - V{Ca} +d — D, V{Ca},1dA

Ay n

- /A My (o - VICal, — DayV(Cal,) dA - / (R®) + R — (R),)dV — /V (R®) + Ry dV (72)

nw Vo

whose form suggests introducing the following excess terms:

Excess of surface accumulation

HCaly ., {Ca} 35((X) uoy {Calte
/A* o dA_/Vw<() or ~ (Buo +auKeg ot )dv

NCA) 9% _ 9HCal,
+/Vn<“ TR )dv 3)

n

Excess of surface conductive transport

75 ns‘(esDS-Vs{cA}s)do=/ nw~[DA<x>-V{CA}+&—DAw~V{cA}w]dA+/ n, - [DAG) - V{Ca)
C

Aw Ay
+d — D4y V{Cal},1dA (74)
Excess of surface reaction rate
/ (R),dA = / (R(x) + R(x) — (R),)dV + / (R(x) + R(x))dV (75)
A%, Voo vy

In Eq. (74) n, is the outwardly unit normal vector to the Curve C (Fig. 3), &, is the excess surface volume fraction, D represents the
excess surface diffusivity tensor, and V is the superficial nabla operator defined by V= (I —n;,n,,)-V. The use of Egs. (73)—(75)
into Eq. (72) yields, after making use of the surface divergence theorem [39]

{Cals
e Vs (&Ds - VilCaly) =~y - (Daw - VICal, = DayViCaly) = (R), at Ay, (76)
surface accumulation surface transport excess surface diffusive exchange excess reaction

In many practical situations, the excess of surface transport and accumulation are negligible with respect to the surface diffusive
exchange. Related to this assumption there are certain length scale constraints that must be satisfied. This will be further discussed
elsewhere. Therefore, Eq. (76) can be reduced to

—Noy - (Daw - V{Caly, — DayV{Ca}y) = (R)s atAy, (77

Furthermore, when the excess of surface reaction is negligible compared to the surface diffusive transport, Eq. (77) reduces to
the flux continuity condition

—Nyg - DAyV{CA}n =y - (DAw ' V{CA}w) atAnw- (78)

When this is not the case, one should follow the works of Wood et al. [33] and Valdés-Parada et al. [31] in order to express the
excess of reaction rate as a function of properties measurable in the homogeneous regions. Moreover, from Section 5 in Valdés-Parada
et al. [31], it can be stated that Eq. (78) is a valid assumption whenever the following inequality is satisfied

1
5 V>~ / (79)

Vu

At this stage, an additional boundary condition is still necessary in order to completely define the problem at the inter-region.
Eq. (78) suggests imposing continuity of the weighted average concentration at the dividing surface, {C A}"|XO = {C A}w|x0 As
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consequence, this does not account for the mass transfer resistance between w and y phases at x=x¢. This is the reason why, we
here follow Wood et al. [33] to express the mass-flux continuity condition as

My - DayV{Caly = =10 - (Daw - V{Caly) =0y - (Na), (80)
where (N4 ), represents the excess of surface diffusion flux defined by

1

Anw(X0) J4,,(x0)

e - (NA>3 = ng - Ny dA = (ny - NAs>r)w~ (81)

In Eq. (81) A;,,(Xp) is the area of the averaging volume when the centroid is located at the dividing surface [33]. In general, this
area is composed of two contributions, namely the o u-interface and the yu-interface. Using, Eqgs. (8) and (9), (12) and (13) in Eq.
(81) yields

—Nyo - DayV{Caly = —Myo - (Daw - V{Caly) = (Pop(Cas — KgqUCAu))ZZ + (Pyu(Cay — Két{CA,L))ZZ (82)

The closed form of Eq. (82) is derived in the next section. It will be shown that the closed concentration jump condition involves
effective coefficients that can be computed from the solution of the associated closure problems.

6. Closed jump boundary condition

In order to have a useful form of the jump condition, the point concentration values involved in RHS of Eq. (82) must be expressed
in terms of the weighted average concentrations {Cy },7 and {Cy },. For this, let us first introduce Gray’s [40] spatial decomposition
Caa = (Cac)* +Caey a=o0,p,y (83)
into Eq. (82) to get
—Myo - (Do - V{Caly) = (Pou(Cao = KL Cawl)yy, + (Pyu(Cay — KLY Ca)y) + (Pop((Cao)® — KL (Can) )l

+ (Pyu({Cay)” — Ké‘qV(CA,L)”))ZZ- (84)

It is clear that the terms in the RHS of the above equation must be expressed in terms of the weighted average concentrations
{Ca}e and {Cya},. The needed expressions result from the closure problem derived in Appendix B. Actually, the intrinsic average
concentration (Ca,)” can easily be written in terms of {C4}, while (Cas)? and (Ca,)* are expressed in terms of {Ca}, by
introducing Egs. (C.4) and (C.5) into Eq. (84), leading to

~yo - (Daw - V{Cale) = (Pou(Cag — Kb Ca)); ) + (Pyu(Cay = KI o))y, + (P KL (Cabylg — {Caulxo)-

(85)
Here, it has been assumed that the following restraint is satisfied at the dividing surface
1
{CA}w|x0 > ((CA/;)Mlxo - I(;LG<CA<7>U|X0> . (86)
eq

The derivation of the constraints associated to the above inequality is given in Appendix C. On the other hand, the deviations
Cao(a = o, 1, y) in Eq. (85) are written in terms of the weighted average concentrations according to the boundary-value problem
presented in Appendix B,

Caw = 54(Calolxy +50{Calylxy + by - V{Calolx, +bY - VICalylx 87)

where sé and bf; (¢=0, u, y; L=w, n) are the closure variables. These latter are the solutions of the closure problems stated in the
same appendix. Introducing Eq. (87) into Eq. (85) yields

Ny (Dpo - VICaLw) = (P KB UCalylxo — (Cabulsg) + ((Pou(s5 = KETSONT + (Pyulsy — KT NCaluhg

H(Poyu(st) = KBTS + (Pu(s)) = K&/SINHCalylxo- (88)

In the above equation, the terms containing V{C4a}, |x, and V{Ca}, |x, were neglected on the basis of order of magnitude estimates
(Appendix D). In the same appendix, it is also shown that Eq. (88) can be expressed more conveniently as

—yy - (DAw . V{CA}Q)|X0) = ngf({CA}n|xo - Kg;lf){CA}whO) atAnw (89)
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where ngf represents the effective permeability in the n-region, while K glf‘f) is the effective equilibrium coefficient at the inter-region.
Indeed, under thermodynamic equilibrium conditions, Kg‘ff = 1. As shown in Appendix D, both Pe"ff and K gg are functions of
closure variables sf; (¢ =0, iU, ¥; A = w, ). The boundary value problems for sé can be obtained from Egs. (B.36)—(B.55) in a unit
cell representing the inter-region (Appendix B). The structure of these problems are similar to the one previously solved by Nozad
et al. [41] to compute the effective conductivity for heat transfer in the bulk of a two-phase medium. Methodologies for the solution
of this type of problems have been presented previously [28].

Finally, the closed set of equations describing the macroscopic mass transport of species A in this three-phase system, is given by

Differential equations

8{CA})7 . .
0 = V - [D4,V{Ca},] inthe n-region (90)
o 3{CA}w . .
(60 + oo KU =2 = V - (Dag - V{Caly) = (R),,  inthe o-region 1)
Boundary conditions
—yy - DA)/V{CA}r;|X() = My - (Daw - V{Calplxy) at Ao 92)
—y - (Daw - V{Calylxg) = Pig({Calylxy — K {Calulxg) atApe. (93)

7. Conclusions

In this paper the average equations governing the separation of solute A in a three-phase system have been derived using the
volume averaging method. First, a generalized one-equation model (Eq. (37)) was derived in order to describe the solute mass transfer
in both homogeneous regions and in the inter-region. Conservation equations in the homogeneous continuous and dispersed regions
were obtained from the generalized one-equation model assuming local mass equilibrium in the w-region. The volume average
concentration and effective parameters have been precisely defined in terms of local quantities. Order of magnitude analyses have
been performed to determine the length scale constraints associated to the macroscopic model.

Then, in order to fully describe the solute transport at the dividing surface, a concentration jump boundary condition was derived
following the general methodology recently proposed by Valdés-Parada et al. [31]. Associated closure problems for the determination
of the effective jump coefficients were obtained. One of the main features of the results is that the jump is in the concentration and not
necessarily in the diffusive flux. Indeed, when the surface transport and the excess of chemical reaction are negligible the continuity
of the concentration flux is obtained.

The concentration jump condition contains effective transport coefficients which are expressed in terms of average concentrations
and closure variables. These latter are obtained by solving the associated boundary-value problems presented in Appendix B. It
is worth mentioning that, in the statement of the closure problem, some length scale constraints were imposed as consequence
of assuming local mass equilibrium. However, overly severe length scale constraints were avoided in the derivation of the jump
condition by proposing a combination of equilibrium and non-equilibrium terms in the definitions of the excess properties.

Finally, this study enables a better understanding of the assumptions and validity of the equations modeling mass diffusion and
reaction in three-phase systems. The influence of the microstructure in the jump coefficients can be assessed by solving the closure
problems within representative unit cells of the inter-region. In subsequent papers, the analysis will include convective effects in the
y-phase. This will allow proposing a more realistic model for separation in double emulsion systems.
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Appendix A. Local equilibrium constraints in the homogeneous w-region

In this section, the length scale constraints under which the assumption of local mass equilibrium is valid in the homogeneous
w-region are developed. The one-equation model will be valid if the restrictions given by Egs. (50)—(52) are satisfied. In order to
obtain a more useful form of these restrictions, we follow the procedure developed by Whitaker [35] for local thermal equilibrium.

Locating the centroid of the averaging volume (x) in the homogeneous w-region allows simplifying Egs. (33)-(35) to

&
{Calo = euw(Can) + ﬁwmg (A.1)
€q
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Capw = (Caw)t —{Caly (A.2)
Caow = (Cac)y — KL {Caly (A.3)

Substituting Eq. (A.1) in Egs. (A.2) and (A.3) gives

A &
Capw = K‘jﬁ‘; (K& (Cap)ly = (Cao)3) (A4)
Caow = —€uw(Khy (Can)ls — (Cac)?) (A.5)
which can be used to write the intrinsic averages in the u- and o-phases in terms of the difference K& (C Aty — (Cag)g, and the

weighted average concentration {Cy },, as

(Cap) = ;"Tﬁ;ﬁu{g‘qﬂcmg —(Cac)3) +1{Calyy (A.6)
(Cac)s = KEI{CAY, — £uu(KLE (Ca) — (Cac)2) (A7)

Using Eqgs. (A.4) and (A.5), the restrictions for local-mass equilibrium in the homogeneous w-region can written as follows

€ ovow AKEG (Cap)” — (Cao)
woten () gy B (Canlo = Caolo) g p,vicy),). (A.8)
K& ot
Euw€ow p o
i (Pan = K Dao) V(K (Candly = (Can)) < Daw - ViCalo, (A.9)
€q
(ke — ko KL (Cra)3) 222 (KRS (Ca)te — (Cao)3) < V- (Do - V(Caly): (A.10)

K&
which, using order of magnitude estimates, become

LcLc Euw€ow (K eq <CA/L> (CA0>Z)

(I - KL <1, (A.11)
DAwt>k Keq {CA}a)
8#&)5((:(0 (DA/,L - KgqUDAU) (KgqU(CAu)g - <CAJ>Z) <1 (A.12)
Keq Daw {CA}w
LcLc Eowtuw (K& (Cap) — (Cao)d)
k, — ks KL (C 1. A.13
DA ( n o < RU) ) Kgqa {CA}m < ( )

In order to estimate (Ké‘q‘7 (Cap)t — (Cao)g)/{Ca},, let us express the spatially-smoothed equations for the - and o-phases, in
the homogeneous w-region, as

0{(C )" Dy - 1
Epw 7&” 2 =V |euwDauV{Can)h + VM A n,,CapdA | + o /A Ny - DapVCap dA — epoky
Ho,w Ho,w
Cr VM
X ((CAmﬁf, - (B">“’> (A.14)
Ky
0(Cas)? D - 1
Eow ( Ao)*w =V. 8UQ)DAUV(CAU)Z + Ao nUMCAG dA| + 7/ gy, - DyoVCasdA
o V Ao s
_Sawka<CAa>g(CRo)g - Sawkﬂ<éAaCRa>Z, (A.15)

In addition, from the closure problems, presented in Ref. [29], we have

CAU' =bs - V{Ca},; CA;,L = bu - V{Calys aRa =bgs - V(CRG)U (A.16)
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which allow writing Eqgs. (A.14) and (A.15) only in terms of averaged quantities

HCap)l _ _ D
% =V. (DA;LV(CA;L)Z) + 8#al)V8;Lu) : (DA;J, (CA;J,)M) + Eu lV <{;M [/ n,wb,L dA| - V{CA}w>
A/J.o(u
(Cpu)t
+2 (K T(Cap)lt — (Can)) — ku <<cAu>g - w) (A.17)
guw KV«
3(Cas) _ _ D
270 =V [DaoV(Can)i] + 60 Veow  [PacVICanT] + 65,V - | 0 l / noubodA | - V{Cal,
Aaﬂ,w
Avohe uo © - .
— — (KL (Capdly — (Cac)e) — ko(Cac)g(CRro)g — ko (bobro)y, : VICa}, V(Cro) (A.18)
ow
where, following Quintard and Whitaker [38], we have used
v/ g - DAMVCAM dA = ay w(Keq (CAM> (CAG)Z)) (A.19)

ua w

and a,h,, is a volumetric film mass transfer coefficient. Substituting Eqgs. (A.6) and (A.7) in Egs. (A.17) and (A.18), respectively
give

. d(Keq (Cap)lt — (Cao)3) 4 Ko H{Cale,
7 ot 4 o
o o DAH
=V (Daptow V(KL (Cap)ly — (Cacg)) + V- KL | Dapl + v n,ob, dA| - V{C4l,
123 Ay
—1 o ® o o (Cau)y,
+[ Keq avwh Sawku](Keq <CA,u>w - (CAcr) ) k K {CA }w + Keq ku K (A-ZO)
I

1o {Caly d(Keq (Cap)tt — (Cao)?)

g e ot

_ o uo DAO'

=-V. [SuwDAGV(K (CA;L) <CAcr>w)] +V. DAO'Keq I+ v nay.bo dA| - V{CA}w

o Asp,0

~[@vohetm — ke(Cro)S 0ol (KEg(Cap)l) — (Caodg) — ko(Cro) o K {1C 4}y — ko (bobRro)y, : V{Ca},V(CRo)g,
(A21)

Note that in the above equations we have neglected the spatial variations of the volume fractions. Subtracting Eq. (A.21) from
Eq. (A.20) yields

B(Kgq”(CAH)Z —{Caclg)
ot

=V. [DAJ[LV(K (CA[L> (CAG)Z))] +V

Dapn D
(Dap — Dao) K1+ 21 / Ny Kb, dA + 47 / n,wbgdA] - V{Calw
Vﬂw Apco Vaw Asi,0

+[e -1 Keq Ayl + avwhwg(mi Scrwku - kJ(CRa)Z)Suw](KgqU<CAM>g, - (CAJ)Z))
(Cuw)t
X +

"

+ (ko (Cro)g, — k) Kig {Cale + K ku ko (bobrs)g, : VICa}yV(Cro), (A22)

where we have used the following definition
DAJ;/. = guwDAo + DAMSJw (A23)

However, from the closure problem statement, it is possible to obtain
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At the o u-interface,
KLob,, = by + nwog(l(gql”)2 + 1y, - KL Vb,

In this way, let us define C,,; = Cycl, where

Cc D D
po__ _ TAw o Kib, dA + Ao / n,,b, dA
DAM_DAU Sva Aucw % Aop.w
Doy ] 1 / DKty
= | 2| — n,b,dA + ——— N, Ny, - (K1 4+ Vb,)dA
[8uw50w:| v Aoy noVo S,WV Ao o tlou ( eq o)

So that Eq. (A.22) can be put as
A(Keg (Cap)lh — (Cao)7)
ot
(e KB + e)tvwho — Eowky — ko (Cro)SEual (KT (Cau)t — (Cao)l)
=V - [(Day — Dao) KL+ Cuo)l - V{Ca), + (ko (Cro)g, — k)KL {Cal
(Cpu)l
K

=V [Daop V(KL (Cap)ly — (Cac))]

+Kgq0k/1- =+ k0<b0—bRg>g . V{CA}a)V(CRU)ZJ

The order of magnitude of the LHS of Eq. (A.26) is

HKEG (Cap)t — (Cac)?)
ot

1

LciLc

o volw
X(KgqU<CA/A>Z - (CAU>Z) = {O (t*) +0 < Da = ) +0 <a) + O(Skau + ka(cRﬂ)Z)Suw)}

Eowépw
X (Kt (Cau)l, — (Cac)g)

While the order of magnitude estimate of the LHS of Eq. (A.26) is given by

V  [(Pap — Dac KN+ Cpuo)l - V{Caly + (ke (Cro)g — k) KET{C ALy + ko (bobra)g, : VICa},V(Cro)g,

LcLcy

_ { 0Pan = Do) K& + Cuo)
C

ko (CRro)o L2
+ O(ks (CroYo — kﬂ)KgqU +0 <o<£;>wg) } {Cal,
To obtain Eqgs. (A.27) and (A.28) we have considered that

<CB;L>Z
Ky

=0((Ca)t) =0 ( If;,“’ (KL (Cap)th — (Cao)l) + {CA}w) . bobr, = O(E3)
eq

Substituting the estimates given in Eqgs. (A.27) and (A.28) in Eq. (A.26) gives

K (Canlly = (Ca0ly _ o [ Lou
{Caly LcLc

{((DAM - DAa)(Kgqo + C/uf)/DAcm) + (LCI/LC)[(CI)?; - qu)Kgqo + q)gO(Eg/L%)]}

{1+ 02,/ Dacut*) + 02, /LciLe) + Oeon @2 + $2eu0)e2, /LT

where we have employed the mixed-mode small length scale is given by

Eow€pw DAcm

2

- =
o

" Avwhw

(A.24)

(A.25)

(A.26)

-V. [DAU;LV(KgqU(CAMg - (CAJ)g)] - [(SZJ)KgqU + ggi)avwhw - Ecm)kp, - ka<CRa>g)8p.w]

(A.27)

(A.28)

(A.29)

(A.30)

(A31)
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and the large-scale Thiele modulus

ko (Cro)? L2 ky L2
P2 = M’ q;i _ fukc (A.32)
DAO'M DAUH

In most processes, unless the interfacial mass transfer resistance governs the macroscopic transport, the following estimates are

reasonable
22
o
<1 (A.33)
LcLc
2

e,
1 A34
Dpot” < (A.34)

Therefore, Eq. (A.30) reduces to

Kqu<CAM>$ - <CA<7>g) -0 E%u (A.35)
{Caly LcLe '

The use of this result in the restrictions given in Egs. (A.8)—(A.10) leads to the desired length scale constraints

8;“080(0(1 - Kélq“)ggu

<1 A.36
Do Kbq t* (A-36)
2
Sltwgow(Dﬁ/; - KgqUDAd) gtm <1 (A.37)
Keq Daw LeLci
2 2 DAap.gowguw E%/,L
(P, — Ko ) ————— | 5 | €1 (A.38)
TR Pkl \ 12

From the above equations, it can be concluded that the assumption of local mass equilibrium is valid when:

e Either ¢/, or &4, is much less than the unity.
e The difference between the physicochemical coefficients of the o-phase and the p-phase is negligible.
o Constraints (A.33) and (A.34) are satisfied.

Appendix B. Derivation of closure problem for jump condition

In this appendix, the boundary-value problems for the variables that map the average concentrations onto the local concentration
spatial variations are presented. Since the jump boundary condition (82) is expressed in terms of point variables, let us first use the
Gray’s [40] spatial decomposition

Caa = (Caa)® + Cha, (B.1)
in Eq. (82) to obtain
~yo - (Daw - V{Caly) = (Pou((Cao)” = KL (Can)" + Cag — KL Ca))7,

+ (Pyu((CAy>V - Kgqy<CAu>u + CA)/ - KngCA;L»ZZ (B.2)

In addition, each one of the concentration spatial deviations C 4 can be related to the average concentrations by writing associated
local deviation problems. These can be obtained by subtracting from the point equations (1)—(5) the respective non-closed macroscopic
equations [(32), (26-29)], to obtain

o-phase

3Cas iy 1
=Dy, V2Cpy —
o Aot HACT Y (%)

/ N, - DasVCaodA — e (x)V -
Aue

DAO' /
Y Ja,

_kUCAO’CRU + kO’<CAUCRU)U (B3)

i

Ny A(Cag)? dA}
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aC N
af" = DroVCro — &5 ' (X)Veo(X) - [Dre V{(Cro)°]
D
- Sgl(X)V . ‘1;0 / noMV<CRJ>U dA| — kO'CAO'CRO' + ko(CAUCRayr (B4)
o
u-phase
aCAM 2~ ~ C‘Bﬂ- 1 ~
2 = Dy V?Cpp —ky [ Cap — =2 ) — D, VCa, dA
5 Ap Ap " Ap Kﬂ VM(X) . n,. Ap Ap
1 N D
— / n,, - DapVCaudA — g, 0V - Au / N5 A(Cau ) dA+/ n,, A(Cau)*dA| | .
Vi(x) Ja,, A% Ao Ay
(B.5)
aC . _ . C
afﬂ = Dy V2Cay + &, (O Ve (X) - [DpuV (Cppu)] + ke (CAM - KB“>
"
D
+e XV - % (/ n,,A(Cp,)"* dA +/ n,, A(Cp )" dA) (B.6)
Aus Apy
y-phase
BCA)/ 2= -1 DAV 1 ~
o =DayV?Cay —&,' XV - - . Ny, A{Cay)’ dA | — 7,00 ny, - DayVCaydA (B.7)

In the above equations, we have already imposed the following length scale constraint, that can be satisfied based on the disparity
of the local and macroscopic length scales

Y4
Za« 1, a=ou,y (B.8)

and introduced the following definitions,
A(Cig)" = (Cia>a|x+ya —(Cia)%Ix,» i=A,B,R; a=o,u,y (B.9)

The interfacial boundary conditions associated with Egs. (B.3)—(B.7) are obtained by substituting the concentration spatial
decompositions in Eqs. (8)—-(13)

At the o u-interface

o - DAGVCAU —Nyo - DAMVCAM =Dy - DA}LV(CAH,)M —Dyo - DAJV(CA(I)G (B.10)
surface diffusive source
—Ngy - DAUVCAU - a,u(CAd - KquC‘A/L) = Ngy - DAUV(CAU)U + P(T/L((CAU)G - Kgqa<CA/L>M) (B.11)
surface diffusive source surface exchange source
—Ngy - DRO'VCRU' = Ngy - DRUV(CRO')U (B.12)
—n,6 - Dp,VCpy = nye - Dpu V(Cpu)* (B.13)

At the py-interface

N,y - DayVCay — My - DapVCay =nyy  DapV(Cap)* —nyy - DayV(Cay) (B.14)
surface diffusive source
—ny, - DayVCay — Ppu(Cay — Kl Cap) =y - DayV(Cay)’ + Ppu((Cay)? — Kbl (Cap)*) (B.15)
surface diffusive source surface exchange source

—nyy, - D VCpy =nyy - D, V{(Cpy)" (B.16)
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Using Taylor series expansions of the intrinsic average concentrations about the centroid of the averaging volume [28], the
concentration difference defined by Eq. (B.9) can be assumed negligible when the following constrains are satisfied

2
1o s Ly Epw Luro
- K1, S«l1; = L, —— K1 B.17
i3 < 12 < IOLSWU < 20 L2 < ( )

Therefore, Egs. (B.3)—(B.7) can be written as,

o-phase

DAUVZCAJ = Ngy - DAO'VCAO dA + kJCA(r(CRa)G + ko<CA<r>UCRU + kaCAaCRa - ko<CAaCRa>U (B.18)

Vs(X) Ao

DroV2Cro = £, (X)Ves(X) - [DroV (Cro) 1+ koCao (Cro)’ + ko (Cas )’ Cro + ko CasCro — ko (CacCro)°  (B.19)

u-phase
Dy, V2C k (C CB“) + ! N, Dy, VCa,dA + ! / n,, Dy, VCa,dA (B.20)
A Ap = Ap — . A A : A A .
M " i M K, V(%) A no Iz I V. (X) Ay wy I "
Dy, Vs, = —& ' (x)V [DsaV(Cont] -k (Car— CB B.21
Bu Bu = —¢, X)Ve,(x) - [DpuV(Cpu)"] m Aup % (B.21)
"
y-phase
N 1 N
Dy V3Cay = 7/ ny, - Dy VCaydA (B.22)
Vy(x) Auy

In the above equations we have imposed the following length scale constraints,
Dijot*

%

>1 a=ou,y i=A,B R (B.23)

which allowed neglecting the accumulation terms in Egs. (B.18)—(B.22). Moreover, the characteristic length of the deviations makes
possible to neglect, for the purposes of the closure problem, the reaction terms in comparison to the diffusive contributions. Let us
highlight that, according to Wood and Whitaker [42] (see Appendix A.2 therein), it is reasonable to neglect the reaction rate at the
level of the closure problem even if it plays an important role at the macroscopic level. Indeed, as long as the following constraints
are satisfied

Do Do CAO' Do DA;,L

>, =— > > > =—— > L. (B.24)
K(Z;ko'CRo K%(CAU)UCRJ E(%(CRGW K%,_ku[l - CB;L/K;LCA;,L]
the deviation equations and boundary conditions for species A take the form
o-phase
oy egl (x) -
DpsVCac = Ngy - DpsVCac dA, (B.25)
Ayo
u-phase
by sﬁl(x) . sﬁl(x) -
Dy V-Cyy = n,, Dy, VCy, dA + / n,, Dy, VCy,dA (B.26)
Apo 1% Apy
y-phase
g s;l (x) ~
DpyVCay = / ny, - Dy, VCyydA (B.27)
A/"J/
At the o u-interface
n, - DAUVCAO — Ny - DAMVCA# =Dy - (DA;L - DAUKqu)V{CA}w|X() (B28)

diffusive source
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N-region
y=2h
y=0
w-region
Fig. B.1. Representative unit cell for the inter-region.
—Ngy - DAO'VCAU - O',LL(CAO' - KquCAM) = Ngy - ’DAUKgqUV{CA}aJXo (B29)
diffusive source
At the wy-interface
Ilm, . DAJ,VCAV — nW . DAMVCAM =1y - DAMV{CA }w|X0 — nW . DAngqu{CA}nlxo (B.30)
diffusive source diffusive source
—ny, - DayVCay — Pyu(Cay — Kb/ Cay) =y - Day KLYV {cA}n\X0 + Py KLY ((Calylxy — {Calulxy) (B.31)
diffusive source exchange source

In the above equations we have accepted the validity of the length scale constraints introduced in Appendix C, under which the
assumption of local mass equilibrium is valid at the closure level. Notice that, by neglecting the reaction rate contribution, only the
boundary-value problem for the spatial deviations of species A has to be considered and not those corresponding to species B and
R. This problem has to be solved in a representative unit cell of the inter-region (Fig. B.1). Its height (2/) must be large enough in
order to impose the following boundary conditions

At y=2h, Car=0, Cayu=0, Cay=0 (B.32)
At y=0 Cao=Cacwr Cap=Cauw, Cay=0 (B.33)

which are the deviation values in both homogeneous regions. Assuming that the width of the unit cell is small enough in order
to neglect the curvature effects of the membrane, we can impose periodicity conditions in the tangential direction of the dividing
surface

Caot + 1) =Caot) k=12, a=opu,y (B.34)
The sources in Egs. (B.28)—(B.31) suggest the following form for the spatial concentration deviations
Caa = 59(Caly + SUUCa), + D2 - V{Caly + bl - V(Ca), (fora=o,u.y) (B.35)

Using these expressions in Eqs. (B.25)—(B.34) gives rise to the boundary-value problems for the closure variables s, Sos b{, and
bJ. The associated differential equations (for these four closure coefficients) have the same form. Therefore, the set of differential
equations can be written in compact form as

Differential equations:

o-phase
1
Vi = N,y - Voo dA, B.36
Yo V,(x0) " o Yo ( )
u-phase

1 1
Vi, = —— Vo, dA Vo, dA B.37
q),u. VM(XO) /AMU nMU' (p;,L + VM(XO) Aﬂy nMy (p;l, ( )
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y-phase
1

Vy(XO) Ay

Vi, = n,, - Vo, dA (B.38)

where ¢, represents the closure coefficients according to

w

Pa = Sy Sqs by, bl a =0 u,y (B.39)

However the boundary conditions to which Egs. (B.36)—(B.38) are subjected cannot be summarized easily. They are

At the o u-interface

N5 DaoVsy =nue - DaVs), L=ow.n, (B.40)
N5 - Daog Vb = Nyo - Day Vb = ny6(Day — DaoKLY) (B.41)
N, - DacVby =16 - Dap Vb (B.42)
Ny - DaoVsy = Poulsy — Kish) A =w.n (B.43)
—Ngy - Dac Vb — Pou(by — KLIbY) = 0o Dac KL (B.44)
—Ngy - Dac Vb = Py (b] — KLTb)) (B.45)

At the py-interface

0, Dy Vs, =nyy - DapVs,, A=ow.n (B.46)
0,y - Day Vb —nyy - Day Vb =1y, Day (B.47)
nuy - DayVb) —nyy - Day Vb = —nyy Day KL (B.48)
—Nyy - DayVsy — Pyu(sy — KLJ's)) = =Py KLy (B.49)
—ny, - ’DA},VS;’, - PW(S;’, - Ké‘qysZ) = PWKgqy (B.50)
—ny, - Day Vb)) = Py (b)) — K{JI'b)) (B.51)
—Ny,, - Day Vb — Py (b), — KLVb) = ny,, Day KL (B.52)
At y=2h ¢4 =0 (B.53)
At y=0, b?=Db,, bl‘zzbu, ¢y, =0, sy =s51=0, bl=bl=0, a=opu,y (B.54)
Periodicity
0ot + L) =@a(r) k=1,2;a=0,u,y. (B.55)

In addition, in Eq. (B.54) we have used Eq. (54). This concludes the analysis.
Appendix C. Local mass equilibrium for the closure problem of the jump condition

In this section, the length scale constraints associated to the validity of the local mass equilibrium in V,, in the inter-region are
derived. The analysis is based in the analogous case of heat transfer in porous media described by Whitaker (Chapter 2, in Ref. [28]).
In Section 4 we introduced the following expression,

{Calolxy = uX0){Cap)Ix, + 8;{(6,?)<CAU)"IXO (C.1)

Associated to this weighted average, the following macroscopic deviations arise
Caplxy = (Can)lxy = {Calulxo (C2)
Caolxy = (Cao)lxy — Kb {Calulxg (C3)
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Combining Egs. (C.1)—-(C.3) gives,

(Ca) o = (Calols + €0 (X0) ((CAM>“|X0 R Caa)” |X0> (C4)
1

(Cao)ly = KET{C Yoy, — enR0)KLY (<CAM>“|XO—W<CAG>“|XO> (C.5)
eq

In order to develop the restraints behind the assumption of local mass equilibrium, let us substitute Egs. (C.4) and (C.5) in the
interfacial boundary conditions for the spatial deviations of species A to obtain,

At the puo-interface

n,o - DAO'VCAO' — Ny - DA,LLVCA;L =Nys - (DAu - DAUKMG)V{CA}M|X0

1
+n,,-V |:DA,LLG ((CAM)MMO - M<CAG>G|X()>:| (C.6)
Keq
—Ngy - DAO’VCAU - a,u(CAa - K CA/L) = Ngy - DAGV(K {CA}w|x0) PoquqU <(CA/L>M|X() - Kuo' <CA(1> |x0>
eq
1
— gy, - Vv |:’DA05;L(X0)Kqu ((CA/L>M|XQ - I(”,O'<CAO’>U|X0):| (C.7)
eq
At the wy-interface
Ny - DAVVCAV —Dyy 'DAMVCAM =1y - DauV{Calolxg — Ny - Day KL V{CA} Ix
1
+nyy, -V [DAMEU(XO) <(CAM.)M|X() ~ X (Cas)? |xo>} (C.8)
eq

—yy - DAyVCAy - Pyu(CAy - KgquAu) =y, - ’DAyKéLqVV{CA}MXO + PVMKMV({CA} Ixo = {Calwlxo)

— Py KLl e6(x0) ((CAM)M|X() - (Cas)” |x0> €9

K&y
Where we have introduced the following definition,
Dapo = DA,LLEO'(XO) + DAagu(XO)Kgqa (C.10)

From Egs. (C.6)—(C.9) it is obtained that the local mass equilibrium is valid at the closure level, if the following inequalities are
satisfied,

(Dap — DacKEJ)V{Calolxg >V AW(K“"(CAHWIXO <CA0>J|X0):| (C.11)
w%b\»v gfm@wwwm—wmmw} (C.12)
(Cao, KY CAM) > (KL (Cap)Ixg = (Cac)’Ixo) (C.13)

£5(X0), £,(X0)

{Calolxe > e (K& (CapIxg — (Cas)’Ixo) (C.14)
eq

In addition, from Appendix A, the following estimates are obtained

Kgq(j(CAu)”xo - (CAJ)H|X0 -0 @%ﬂ (C.15)
{Calulxo L? .
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here,
SO'(XO)SM (XO)DAMO'
ay(x0)h(xo)

From Eq. (C.15), the following length scale constraints are obtained when this estimate is substituted in Egs. (C.11), (C.12) and
(C.14),

0, = (C.16)

Kgqa(DAM - DAUKgqU) > £z27u

— C.17
DA/ur L2 ( )

no 2
Keq > Cou (C.18)
£5(X0), £,(X0) L?

Notice that the above equations are automatically satisfied if the physical properties of the two phases are equal (i.e., D, —
Das Ké‘qg) or only one phase is present. If these length scale constraints are satisfied in the inter-region, then Egs. (C.6)—(C.9) are
simplified to,

At the po-interface

n,q - DAO'VCAO' —Nyo - DA;/.VCAM =Nyg - (DAM - DAaKqu)V{CA}w|X0 (C19)

- ~ ~ 1
—Ngy - DpsVCas — JM(CAJ - KquCAM) = Ngy - DAUKquV{CA}w|X0 - PGMKgqU ((CAM)M|X0 - (CAU)U|X0>

KLy
(C.20)
At the py-interface
0y - DayVCay =y - DayVCay =0y, DauV{Calylxy — My - Day KhIV{Calylx, (C21)
—y - Dy VCay — Pyu(Cay — K1Y C) = 1y - Day KEYVICa)lng + Py K ((CaYylxo — (Calolxo) (C.22)
In order to develop the constraints associated with Eq. (C.13), let us assume that
Cao = OKLI Cap) (C.23)

Following Whitaker [28] it is desirable to distribute the surface diffusive source V{Ca},,|x, in a manner consistent with the above
equation. To this end, a weighting parameter ¢ € [0,1] is introduced, this allows distributing the flux as

n,o - DAUVCAO’ = (p[n;ur ' (’DAM - DAGKgqU)V{CA}wlxo] (C24)
Ngy - DAMVCAM =(- Qo)[nua . (DA;L - DAUKgqU)V{CA}a)|Xo] (C.25)

From the above equations, the following order of magnitude estimates are obtained

- Dy, — Das KL
cAa=0{¢zg( i eq)V{cA}wm} (C.26)
Ao
. Dy, — Das KL
cAM=0{(1—<p)zu( A 5 A °q)V{CA}w|x0] (€.27)
Ap

The order of magnitude of the weight ¢ is obtained by substituting Egs. (C.26) and (C.27) in Eq. (C.23) as,

0, Das K
o= [ 1 DacKeq W} (C.28)
LeDay + £, DasKeq
and, as consequence,
~ ~ EGZ KgU(DA _DAUKgG)
Cas = O(KFCy,) =0 e T 1v{c C.29
Ao ( eq A/l.) |: KU’DA;A+EN’DAO’K516 { A}w|x0 ( )

This result allows determining from Eq. (C.13) (taking in account the estimate in Eq. (C.15)) the following length scale constraint

z«:rzp,l{é:}'qa(i)Au - DAaKgqo) (&m)
Lop(loDay + EMDAUK&IJ) L

(C.30)
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For many practical systems the left hand side of the above equation is of the order of one, therefore, if £,,, < L, then the assumption
of local mass equilibrium is satisfied at the closure problem level for the po-interface.

Appendix D. Simplifications and order of magnitude analysis for the closed jump condition

In this appendix the simplification of the closed jump boundary condition (Eq. (88))
—Ny - (Daw - V{Cal,) = (Pyquqy)ZZ({CA}n|Xo —{Calolxg) + (Poulsy — Ké‘q“S‘,'j))zZ + (Pyulsy — Ké‘q”Sﬁ))ZZ){CA}wlxo
+ (Pop(s3h = KUTSIN + (Pyu(s], = KLY ST ) (Calylsg + (Poyc (b = KLTHI)
+ (Pyu(b = KEYBD)™) - VIC A ylxy + (Poru (B — KLTHI)
+ (P (b — KEBINT) - V{Calylx, (D.1)

is performed by showing that the two last terms in the RHS of the above equation are negligible. Indeed, an order of magnitude
analysis, based in the results of Appendix B, yields

(Pop (b = KLTBDN + (P = KLTBON™) - V{Calulxg

[ ( KL Do Pop(l — €5/L,) Day Py K

¢
+ Dpp—{Calulxy | (D:2)
PyuloDay — (Pou Kb €y — Dap)Dac  PyulyDay — (Pl Kbl — DAM)’DA},) ) @1X0

((Poy (0 = KETHINT + (Pyu(®) = KLTBIN™) - V(Calylxg

-0 |:( Pcm(eaDAu/DAa - Kgqup,) - DA/L
(Dap — KgquVMZM)"DAV + Py Dauty

¢
) PWK{c”‘qV’DAyLy{CA},]IXO] (D.3)

Therefore, if the length scale constraints,

( Kt Do Pop(1 — £5/L,) N Day PyuKéd
PO'/,LEO'DA/,L - (PauKénggu - DAM)DAU P}//LZVDA[L - (Py,ug/j,Kgqy - DA[L)DAV

( PO'M(EUDAM/DAO' - Kgqazy.) - DAM
(Day — Keq Ppul)Day + PpuDanty

£
) DAHT“ <1 (D.4)

¢
) PWKngDAyfV <1 (D.5)

are satisfied at the inter-region, the jump condition simplifies to

—Nyo - (Daw - V{Caly) = (PVMKQIV)ZZ({CA}nIXO —{Calolxg) + (Pop(sy — Kéﬁ’Sfj))‘;Z + (Pyu(sy) — K&'s), )’,;Z){CA}Q)IXO

+ ((Ptm(sg - Kgqasz»;;g + (Pyu(sz - KgquZ))ZZ){CA}rﬂxo. (D.6)

Substituting the local permeabilities and equilibrium coefficients’ spatial decompositions [33]

Poy = <Pau>?]{g + Pau D.7)

— ap 4§

Kg‘é‘ = (Kg‘é‘)nw + Kgé‘ (D.8)
in Eq. (D.6) leads to [28],

~10- (Do - V{Calulsg) = PRUCYy b — KE(CAYulxo), (D.9)

at the dividing surface.
In the above equation we have introduced the following effective coefficients

Effective permeability of the n-region

ngf = Pefr + (PG;L)JM(I?MUSH >UM + <Pyu)yﬂ<kﬂy5n>yu + (EMZ)ZZ + (PVMSH)ZZ - <P0u5n>GM(KMG>GM

nw ¥ eq T llpg nw ' req TLh pey 14 [/ TO R 7]
_(E NV r U\ VYIL D oMo M\ P Fruy 7\ VM
(PV“s#)nw(Keq )770) <Po‘#Keq Sﬂ)nw <P)/#Keq Sﬂ)nw (D.10)
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Effective permeability of the w-region
Py = Petr = (Pou) 0y (KL s1T7 = (P g ARG S0 — (Poyus Yy — (Pyusy)) e+ (Pyusi) E(KEDT
+ (PJMsM)U“(KW)““ (P, Kgqysu> + (P KLs ‘;;)ng (D.11)

Effective equilibrium coefficient of the w—n inter-region

o _ Per
&
Kl = 5 (D.12)
€

here Pefr = ( Py )" (Ke L V)W + (PW K W) can be computed from the local spatial distribution of P, and K

nw
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